
MechARspace: An Authoring System Enabling Bidirectional 
Binding of Augmented Reality with Toys in Real-time 
Zhengzhe Zhu∗ Ziyi Liu∗ Tianyi Wang 
zhu714@purdue.edu liu1362@purdue.edu wang3259@purdue.edu 

School of Electrical & Computer School of Mechanical Engineering, School of Mechanical Engineering, 
Engineering, Purdue University Purdue University Purdue University 

West Lafayette, IN, USA West Lafayette, IN, USA West Lafayette, IN, USA 

Youyou Zhang Xun Qian Pashin Raja 
zhan3264@purdue.edu qian85@purdue.edu praja@purdue.edu 

School of Electrical & Computer School of Mechanical Engineering, School of Mechanical Engineering, 
Engineering, Purdue University Purdue University Purdue University 

West Lafayette, IN, USA West Lafayette, IN, USA West Lafayette, IN, USA 

Ana Villanueva Karthik Ramani 
villana@purdue.edu ramani@purdue.edu 

School of Mechanical Engineering, School of Mechanical Engineering, 
Purdue University Purdue University 

West Lafayette, IN, USA West Lafayette, IN, USA 

Figure 1: An overview of MechARspace workfow. (a) A user starts with a chest (physical toy) which contains a rotation module 
(part of our IoT toolkit). The chest, with its module, is imported into the AR scene by the user defning a bounding box 
around it. (b) The user authors the interaction between the virtual ghost and the rotation module of the physical chest through 
demonstration and input-output visual programming. The ghost pops out of the chest with respect to the angle the user sets 
for the rotation module. (c) The user plays with his authored AR-enhanced toy. 

ABSTRACT 
Augmented Reality (AR), which blends physical and virtual worlds, 
presents the possibility of enhancing traditional toy design. By 
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leveraging bidirectional virtual-physical interactions between hu-
mans and the designed artifact, such AR-enhanced toys can provide 
more playful and interactive experiences for traditional toys. How-
ever, designers are constrained by the complexity and technical 
difculties of the current AR content creation processes. We pro-
pose MechARspace, an immersive authoring system that supports 
users to create toy-AR interactions through direct manipulation and 
visual programming. Based on the elicitation study, we propose a 
bidirectional interaction model which maps both ways: from the toy 
inputs to reactions of AR content, and also from the AR content to 
the toy reactions. This model guides the design of our system which 
includes a plug-and-play hardware toolkit and an in-situ authoring 
interface. We present multiple use cases enabled by MechARspace 
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to validate this interaction model. Finally, we evaluate our system 
with a two-session user study where users frst recreated a set of 
predefned toy-AR interactions and then implemented their own 
AR-enhanced toy designs. 

CCS CONCEPTS 
• Human-centered computing Human computer interaction 
(HCI); 
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1 INTRODUCTION 
Augmented Reality (AR) leverages forms and features of both phys-
ical and virtual environments. AR thus provides designers with the 
potential to enhance physical toys with visualizations and inter-
actions beyond physical constraints. A handful of AR-enhanced 
toys have recently emerged, from commercial products like Mario 
Kart Live [7] and Lego Hidden Sides [6] to research projects like 
Project Zanzibar [80] and Checkmate [36]. However, existing tools 
for creating AR applications for these toys are dedicated for the use 
by experienced professionals and have high technical barriers to 
entry [11, 12, 61]. Thus, novice designers miss out on the opportu-
nity of imagining, designing, and implementing AR-enhanced toys 
based on their unique ideas. To address this gap, we develop an 
authoring system which empowers end-users to quickly prototype 
AR applications to personalize their physical toys. 

The frst step towards developing the authoring system is to 
understand the nature of toy-AR interactions. We summarize that 
these interactions take place bidirectionally between physical and 
virtual worlds: (a) physical toys as triggers to actuate AR content, 
(b) AR content as triggers to actuate physical toys. As an example 
of (a), in LEGO Hidden Side [6], users can manipulate the LEGO 
blocks to unlock a hidden storyline displayed using AR. As for (b), 
in the racing car game, Mario Kart Live: Home Circuit [7], users 
can throw a virtual bomb on opponents’ physical cars to stop them 
as if the bomb were real. In (a), the toys serve as tangible user 
interfaces (TUI) giving users access to the virtual world. In (b), 
the reactions of the toys to AR animations make the interaction 
more realistic and immersive [74]. To the best of our knowledge, a 
unifed design framework for bidirectional toy-AR interactions has 
not been established in prior works. 

Conventional AR authoring tools (e.g., Unity3D [11], Unreal [12], 
ARCore [1], ARKit [2], etc.) decouple the programming and testing 
environment [61, 76, 81]. Developers have to project the status of 
the 3D physical toy from diferent perspectives while programming 
AR animations, which requires expertise and is time-consuming [59, 
91]. In contrast, the immersive experience supported by AR-HMD 

fosters the evolution of authoring workfows in an in-situ approach 
[81]. By blending the authoring process into the AR environment, 
users have contextual information—the status viewed from diferent 
perspectives—of the physical toy and its associated AR content. 
For example, let us imagine a scenario in which a user wants to 
program a physical toy such as a Transformer robot, which can 
trigger diferent special efects (e.g., fre, laser beam) along with 
corresponding fghting poses (e.g., arms forming an X or a T) using 
AR. The user can simply change the robot to fghting poses and 
program the associated AR animations/efects on the spot, while 
referring to the robot’s pose for spatial context. In addition, the 
WYSIWYG (What You See Is What You Get) metaphor [21] enables 
users to create animations through direct manipulation within AR 
without writing lines of code, which lower the entry barrier of AR 
authoring [74, 81]. 

Similar to authoring AR content, authoring physical behaviors 
of toys should be equally intuitive and accessible to end-users. 
To lower the barriers of physical programming, researchers have 
designed various robotics modules can record the user’s demonstra-
tion and play it back to animate the robot [66, 66, 71, 75]. With such 
tools, users can design and create without any low-level program-
ming knowledge. Inspired by these works, we develop a toolkit 
that allows users to embed virtual efects to the physical structures 
of toys, and then create an interactive virtual-physical experience 
through programming by demonstration. 

We propose MechARspace, an in-situ authoring system that sup-
ports the real-time creation of AR applications to make toys more 
playful. We explore the design space of physical-virtual interactions 
between AR and toys and use it to guide our system design. The 
system includes two parts: a plug-and-play toolkit designed to be 
embedded into common toys, and an authoring interface built on 
a pair of optical see-through AR glasses (i.e., Hololens 2 [3]). The 
toolkit encapsulates diferent sensors and actuators so that users 
can efortlessly upgrade toys with AR capabilities without going 
through lengthy electronic prototyping processes. This toolkit is 
IoT-enabled, which means it will be constantly connected to the 
AR headset once imported to the scene. MechARspace facilitates in-
tuitive authoring of both AR animations and toys’ actions through 
direct manipulation, while referring to the physical toy for a con-
textual reference. Through a trigger-action visual programming 
interface, users can create bidirectional interaction by utilizing their 
inputs on toys to trigger AR animations and vice versa. Furthermore, 
with the real-time sensing and actuating capability of the toolkit, 
users can instantly play with the authored toys which fosters rapid 
design exploration. 

We propose the following contributions: 

• A unifed framework of the bidirectional physical-virtual 
interaction model for the AR-enhanced toys. 

• A plug-and-play IoT-enabled modular toolkit with sensing 
and actuating capability that enables ordinary toys to inter-
act with AR. 

• An in-situ and easy-to-use authoring interface for creating 
toy-based AR applications through demonstration and visual 
programming. 
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• A wide range of example toys with their AR applications to 
validate the applicability of our interaction model and the 
extensive reach of our authoring system. 

2 RELATED WORK 

2.1 Bidirectional Interactions in AR-enhanced 
Toys 

A toy is defned as a tangible that is engaging to play with [55]. 
Recently, researchers have discovered that combining emerging AR 
technology with traditional toys can signifcantly expand the inter-
action space and increase the playfulness [40, 41, 77]. AR generates 
a composite view for the user, which provides the capability for toys 
to fuse the matters from virtual and physical worlds [42, 60, 77]. 
In general, we classify the interactions between AR and toys into 
two directions. 

Physical toys as triggers to AR content: Interactions in this cate-
gory are inspired by the concept of tangible user interfaces (TUIs) 
[48, 49] which translates the manipulation of physical objects (as 
triggers) into animations of AR content. For example, static or dy-
namic virtual models are anchored onto tracked toys to follow 
their movement [21, 38]. Apart from this location-oriented bind-
ing, AR can be controlled by tangibles through logical connections. 
RobotQuest [57] is a mixed reality gaming platform where players 
can control a physical robot to repel virtual enemies projected on 
the foor. Zhou et al. [92] proposed an AR storytelling tool with 
which users unlock storylines by manipulating a cube. Project 
Zanzibar [80] proposed an interaction scenario where users trigger 
diferent AR animations by moving and rotating toy fgures in the 
scene. 

AR content as triggers to actuate physical toys: Toys nowadays are 
often equipped with actuators (e.g., servos, motors, LEDs) [28, 43] 
which enable them to actively react to corresponding AR con-
tent. Prior works have exploited AR to create in-stu user inter-
faces for programming both industrial [50] and recreational robots 
[26, 37, 85]. Similarly, exTouch [51] utilized an AR-mediated mobile 
interface to translate users’ touchscreen interactions into physical 
objects’ actuations. Meanwhile, researchers have sought to rein-
force the sensation that the virtual and real elements coexist by 
allowing AR to actuate the physical world [23, 74]. For example, 
MotionBeam [84] proposed an interaction scenario where a cartoon 
character projected onto the wall can jolt a picture frame out of 
place. ColabAR [79] introduced a haptic module which will vibrate 
whenever it collides with a virtual object. In Kobito [18], imaginary 
agents can move real objects (e.g., a tea caddy) on the table to make 
themselves more realistic. 

A more comprehensive summary of bidirectional physical-
virtual interactions could be found in the recent AR and robotics 
survey paper from Suzuki et al. [74]. 

Interactions in the previously mentioned systems are predeter-
mined for specifc applications by professional developers. The lack 
of novice-friendly development tools impedes novice designers’ 
ability to integrate personalized AR experiences to their toys. Pre-
vious AR authoring systems have allowed users to dynamically 
superimpose virtual content on top of physical items based on their 
preferences [32, 53, 78]. However, these authoring systems only 
enable one-direction of interaction authoring (i.e., AR content is 

simply superimposed on the physical objects). To capture a more 
extensive design space, we propose MechARspace, an end-user 
authoring system that facilitates the bidirectional virtual-physical 
authoring space of toy-AR interactions. 

2.2 Immersive AR Authoring Tools 
Development tools for creating AR applications have long been the 
focus within the HCI community [61, 67, 68, 70, 78]. Traditional 
desktop-based AR development tools such as Unity [11] and Unreal 
[12] decouple the programming and testing process. Alternatively, 
immersive authoring has been proposed to directly blend the au-
thoring process into the AR interaction space [58, 83, 90]. This 
approach allows for intuitive 3D manipulation instead of 2D pro-
gramming [67], and accelerates the build-test cycle by enabling 
on-the-spot evaluation of authored artifact [59]. Following this 
paradigm, Window Shaping [46] and SceneCtrl [89] empowered 
the creation of static 3D models and virtual scenes by leveraging 
the spatial perception of AR devices. ARAnimator [87] and Pup-
petPhone [16] allowed users to author an animation sequence of a 
virtual character using a smartphone as the motion controller. 

However, AR applications created by these tools are not interac-
tive, and thus, cannot respond to users’ actions or real-world phe-
nomena. Researchers have sought to incorporate diferent sources 
of input into the authoring workfow to drive dynamic AR ani-
mations. Ng et al. [69] facilitated situated AR games development 
with users’ real-time location as trigger. SpatialProto [65] achieved 
prototyping of interactive AR through capturing human motion 
for associating with animated virtual content. GestureAR [81] pre-
sented an authoring system which supports end-users to defne 
customized gestures for freehand AR applications. ProGesAR [86] 
allowed users to quickly design proxemic and gestural interactions 
with real-world IoT by prototyping them in AR. 

In particular, several authoring systems have utilized the status 
of tangible objects as input. iaTAR [58] enabled users to map fdu-
cial markers to common UI elements (e.g. buttons, sliders) to design 
a tangible AR interface. RealitySketch [76] allowed users to make 
sketched graphics responsive by binding them with moving ob-
jects. With these tools, users freely drew mappings from real-world 
tangible objects to AR content. 

In MechARspace, we take a step further by enabling the author-
ing of bidirectional interactions — MechARspace does not only 
augment passive physical objects, but also incorporates with ac-
tuated physical objects by leveraging IoT modules, so that users 
can quickly author an interactive and bidirectional experience for 
AR-enhanced tangible objects. With immersive authoring, we allow 
users to constantly refer to their toys for more context information 
and to test their ideas immediately. Using this strategy, users can 
quickly validate and iterate their ideas. 

2.3 Programming by Demonstration 
Programming by Demonstration (PbD) [56, 64] is a technique that 
allows users to defne interactivity by performing examples of the 
intended behaviors. It can greatly enhance end-user development 
by overcoming low-level programming details [61, 63]. It was frst 
introduced to the robotics industry [20, 24] where operators demon-
strate movements for robots to repeat. Thanks to the embedded 
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sensors with kinetic memory, this process could be done intuitively 
by direct manipulation [30]. Similarly, Reactile [75] proposed a 
tabletop TUI customization approach by manually arranging the 
objects to desired states. 

Meanwhile, PbD also fnds its applications in the virtual space. 
Arora et al. [19] allowed users to author AR/VR animations by 
holding virtual objects through designated trajectories. AdapTutAR 
[45] captured body gestures over a given period to generate AR 
tutorials. Recently, Wang et al. [81] combined PbD with trigger-
action visual programming, where the demonstrated hand gestures 
and AR animations are linked as input and output respectively. 

Inspired by prior work, MechARspace applies the metaphor 
of programming by demonstration to tangible and virtual objects 
alike. Users’ interactions with AR content and actions upon tangible 
objects are both recorded and later connected together with trigger-
action visual programming. Utilizing this strategy, users can defne 
the bidirectional interactivity between input and output elements. 
Furthermore, our immersive authoring environment can supple-
ment PbD with rich and in-situ visualization of the demonstrated 
outcome, which brings contextual awareness to the workfow [25]. 

2.4 Modular IoT Toolkit 
Developing physical devices and interfacing them to conventional 
programming languages has always been difcult for end-users 
[34, 66, 71]. To address this gap, Phidgets [34] pioneered the ap-
proach of packaging input and output devices into modules to 
hide implementation and construction details from users. Similarly, 
Physikit [44] introduced an easily confgurable toolkit that can be 
embedded to everyday objects, allowing users to physically visu-
alize IoT data in their homes. To further lower the entry barriers, 
Topobo [71] and MorphIO [66] adopted the concept of program-
ming by demonstration for their modular toolkit. 

Recently, researchers have sought to utilize modular IoT toolkit 
to enrich AR experiences [54]. The most common application sce-
nario is to utilize capacitive sensing [35, 88], or RFID modules [80] 
for tracking tangible objects. Compared to traditional vision-based 
tracking, they are less susceptible for low light or occlusion, thus 
can provide an uninterrupted experience [73, 80]. Similarly, IMUs 
have been utilized to detect the gesture input for manipulating 
AR content [39] and calculating the toy’s absolute position [27]. 
Apart from exploiting toolkit’s sensing capability, Cao et al. [26] and 
Glenn et al. [33] presented modular IoT that could be dynamically 
actuated by AR animations. 

Inspired by these works, we introduce a collection of modular 
components for our toolkit that could help record human input 
as well as actively react to dynamic AR animations. Our setup 
is designed to resonate with the the bidirectional toy-AR interac-
tion model. The modules are intended to provide a plug-and-play 
experience and help toy designers quickly prototype diverse AR 
experiences based on traditional toys . 

3 INTERACTION FRAMEWORK FOR AR AND 
TOYS 

The interactions between AR and toys are currently scattered across 
independent systems, creating somewhat a fragmented research 
landscape. To address this problem, we conducted an elicitation 

study which helps us combine the afordances of AR and toys to 
propose a unifed framework that summarize these bidirectional 
interactions. 

3.1 Input and Output Model 
The input-output model has been widely adopted by previous inter-
action authoring systems including GesturAR [81], Trigger-Action-
Circuits [17], and Kitty [52]. In this model, an interaction involves 
two components, an input that is initiated by a subject, and an 
output that is generated by an object in response to the input. The 
toy-AR joint interaction adopts a similar pattern where the input 
is the toy’s action and the output is the behavior of virtual con-
tent, or the other way around. More specifcally, using a physical 
toy as input refers to the process where a user directly moves or 
manipulates the toy into a certain status and triggers an output. 
For instance, moving a Transformer toy robot from place A to B. 
Meanwhile, the output refers to the process in which the objects 
project certain visualizations. For example, sparks coming out from 
the Transformer’s legs. 

To categorize input and output interactions between AR and toys, 
we analyzed DIY-ed toys made by undergraduate students from a 
senior level toy design class. This class has been taught for about 
20 years as an innovative approach for teaching computer-aided 
design (CAD) and prototyping to mechanical engineering students. 
At the end of each semester, students (in groups of 4-5) must present 
their prototype implementations, which usually involve the design 
of both hardware and software. These presentations were recorded, 
which helped us better understand the complexity and capabilities 
of each toy during our analysis. Two co-authors of this paper have 
been serving as teaching assistants of this class for the past two 
years, so they have frst-hand knowledge of students’ toy design 
processes. We examined a total of 78 toys made by students in 
the last three semesters (Figure 2). Based on the taxonomy of toys 
developed by Kudrovitz et al. [55], we classifed these toys into the 
following groups: Fantasy (38), Construction (18), Sensory (11), and 
Challenge (7). We analyzed common features in the toys, in terms of 
fabrication (hardware parts) and programming (logic and software). 
Likewise, we summarized the purpose of each toy and envisioned 
how they could be AR-enhanced within the context meant by the 
designers. Based on this elicitation process, we compiled a detailed 
classifcation of input (Figure 3) and output (Figure 4) interactions 
across AR (virtual content) and toys (physical content). Each cell in 
these fgures depicts a single example interaction, but represents 
an entire class of opportunities. 

Figure 2: Representative toys designed in the toy design 
class. 
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Figure 3: Input taxonomy. 

Input 1: Spatial placement. Spatial placement relates to the 
input class in which the user moves an object (physical or virtual) 
from one place to another. This type of input is common in board 
games where toy pieces’ and fgures’ movements are meaningful 
to the game’s progress. For instance, in StoryMakAR [33], users 
place the virtual character on diferent places to unlock respective 
storylines. 

Input 2: Collision. Collision is a special case of spatial place-
ment in which the user holds an object (virtual or physical) to 
hit another one directly. For example, in the popular toy "Wack-
A-Mole", the user wields a physical hammer to smash a physical 
mole. Similarly, virtual content can also be made to collide with a 
physical (or virtual) object. For instance, in Motion Beam [84], the 
user controls the virtual character to hit the picture hanging on the 
wall. 

Input 3: Manipulation. Some toys allow users to change their 
internal status or layout without moving it spatially. For instance, 
users can move the arms of a Transformer toy robot to form diferent 
poses. Meanwhile, virtual items with intricate structures could also 
be manipulated (e.g., a virtual lock to be set at combination 1-2-3-4 
to close a chest). 

Input 4: UI element. Due to legacy bias [22], traditional UI 
elements such as buttons and knobs are still favored by the users 
for giving input to the toy. The digital twins of these UI elements 
are also prevalent in virtual space. 
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Figure 4: Output taxonomy. 

Output 1: Global movement. Most car-like toys support this 
output as they are designed to move at relatively long distances 
from the user. Similarly, virtual objects can travel around space 
along any trajectory predefned by the user [19, 81]. 

Output 2: Physics simulation. This type of output is a spe-
cial addition to the global movement. The diference is that the 

trajectory of the movement follows the laws of physics and cannot 
be explicitly defned by the user. For example, a virtual ball would 
bounce up and down on the physical desk and a physical toy car 
would bounce back after hitting a virtual wall. 

Output 3: Local movement. As opposed to the global move-
ment, local movement refers to parts of the toy moving relative to 
its main body. For instance, the top of the chest opens, or the arm 
of the robot waves. Depending on the user’s preference, the part 
that moves locally can be virtual or physical [81]. 

Output 4: Sensory efect. We adopt the word "sensory" from 
Kudrowitz et al.’s paper on toy taxonomy [55], which defnes sen-
sory play to involve intentional entertaining of the senses such as 
hearing, vision, and touch. For instance, the haptic feedback from 
squishing a ball and the sound efect of a music box are physical 
examples of this output. In the virtual world, the sensory output 
is usually rendered in the form of a visual efect that cannot be 
perceived in the real world. 

3.2 Creating Bidirectional Toy-AR Interactions 
through Trigger-action Connection. 

To simplify the authoring experience, we adopt a trigger-action 
programming model in MechARspace. In this bidirectional interac-
tion model, a physical toy input can trigger the AR content actions 
and vice versa. Based on the aforementioned taxonomy of input 
and output, users can create numerous types of interactions by 
connecting diferent triggers to actions. To further increase the 
diversity of this interaction space, we separate the mapping from 
input to output as follows: 

Discrete trigger-action (Figure 5a) that if the defned trigger 
event (e.g., a button pressed) occurs, the output actions (e.g., a chest 
opens) will be activated. 

Continuous trigger-action (Figure 5b) that allows users to 
specify analog relationships between input parameters (e.g., a physi-
cal or virtual knob’s value) and output parameters (e.g., the opening 
angle of a chest). 

Figure 5: Comparison between discrete (a) and continuous 
(b) trigger-action that connect input to output. 

For discrete trigger-action, we register input as the specifc status 
of the object. For continuous trigger-action, we register input as a 
series of object statuses. In other words, the trigger-action type is 
determined by how input is registered. It is worth noting that the 
collision input cannot be used for continuous trigger-action as it 
happens instantly. Moreover, users can connect multiple actions to 
one trigger to activate them together or connect multiple triggers 
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to one action so that every trigger can activate the same action. 
MechARspace rejects the connection between the mismatching 
triggers and actions to ensure valid authoring. For instance, the 
physics simulation output of the physical toy can only be connected 
to the collision input of virtual content. To enlarge the interaction 
space, MechARspace allows users to connect physical input to phys-
ical output (e.g., light up the physical LED by pressing a physical 
button), and virtual input to virtual output (e.g., enlarge a virtual 
character by turning a virtual knob) that are beyond the scope 
of virtual-physical joint interactions. Considering the authoring 
of such unilateral interactions have been thoroughly explored in 
prior works [61, 62, 66, 71], we will focus on authoring bidirectional 
interactions in the remaining sections. 

In short, our interaction framework consists of three dimensions: 
input entity, output entity, and trigger-action type. In the later 
sections, we will demonstrate the extensiveness of our framework 
with illustrative use cases. For clear reference back to this frame-
work, we will encode each interaction with the combination of 
elements from this framework. For instance, Figure 1 shows a user 
who releases a virtual ghost as he opens the physical chest. This in-
teraction is encoded as "manipulation (physical) - continuous 
- global movement (virtual)". 

4 SYSTEM AND DESIGN 

4.1 Modular IoT Toolkit 
MechARspace comes with eight IoT modules (Figure 6 a) that can 
be attached to a traditional toys (Figure 6 b) for them to have AR 
compatibility. Every module is a standalone device with a battery, 
a microprocessor, and sensors/actuators built-in, so that users with-
out any circuitry knowledge can use it to prototype AR-enhanced 
toys. 

Button 
module 

Switch
module

Knob
module

Linear actuator
module

Rotation
module

Haptic
module

Movement
module

Buzzer 
& Light
module

(a) (b)

Figure 6: (a) Overview of the IoT modules in MechARspace. 
(b) Modules attached to toys. 

4.1.1 Design Rationale. The design of these modules is guided by 
the input-output taxonomy of our framework (Section 3). In other 

words, the role of these modules is to register user input and to 
facilitate toys’ physical output. 

We have the "linear actuator module" and the "rotation module" 
to record the "manipulation" input and to create "local movement" 
output on the toy,. These two modules have share a unique struc-
ture where the servo is connected to the encoder so that we can 
detect the rotation degree of the servo. This design has two benefts. 
First, users can use these modules to record their manipulations 
which are used to animate virtual content accordingly. On the other 
hand, when users want to program output behaviors, this design 
makes programming by demonstration (PbD) possible as it requires 
recording users’ demonstrated behaviors [66, 71]. 

In addition, we have the button module, the switch module, 
and the knob module that correspond to the "UI element" input. 
The "movement module" equipped with omni wheels is designed to 
facilitate the "global movement" output. For users to create "sensory 
efect" output, we provide the "haptic module" which gives vibration 
feedback and the "buzzer & light" module which makes sounds and 
fashes lights. The relationship between the input/output taxonomy 
and these modules is summarized in Table 1. 

Table 1: Relationship between the modules and the in-
put/output taxonomy. 

Input Module name 
UI element Button module, switch module, knob module 

Manipulation Linear actuator module, rotation module 
Output Module name 

Local movement Linear actuator module, rotation module 
Global movement Movement module 
Sensory efect Haptic module, buzzer & light module 

General Modules Haptic ModuleHaptic Module

Linear Actuator Module 
& Rotation Module

(a)

(b) (c)

Pimoroni DRV2605L Linear 
Actuator Haptic Breakout

Arduino Nano 33 IoT

3.7V 150mAh 
Lipo Battery

Top Middle Bottom

Top Middle Bottom

Linear actuator rack pinion cap

Rotation cap Encoder 
318-ENC130175F-12PS

IC for power 
management

Beetle ESP32
microcontroller

3.7V 350mAh
Lipo battery x2

Button Switch Knob RGB LED + Buzzer

Beetle ESP32 microcontroller

3.7V 350mAh Lipo battery

Top

Middle

Bottom

Continuous
servo motor 
FS90R

Adafruit 
NeoPixel 

Jewel

Piezo Electric 
Tone Buzzer

EK2021PBS-33B WH148

Figure 7: Components and internal structures of the mod-
ules. 

4.1.2 Components and Internal Structures. Except for the "move-
ment module" which is purchased online [15], other modules are 
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custom designed and fabricated by us. The case of each module is 
3D-printed to encapsulate its electronic components. Each module 
can be separated into three layers. The top layer is the user interface 
layer which has physical structures for users to push, rotate, press, 
and etc. The middle layer contains diferent electronics including 
the microcontroller, sensors, and actuators. The bottom layer only 
holds the battery so that it could be swapped in and out easily. 
Detailed information on these electronic hardware is depicted in 
Figure 7. 

4.1.3 Connection Mechanism. Each module is a standalone unit 
with WiFi capability. We connect them to the AR headset (i.e., 
Hololens 2) through a server running the MQTT protocol (Figure 
8), which is the standard for IoT communications [72]. This protocol 
is based on the publish-subscribe model so that users do not need to 
reconfgure the network whenever a new module comes in, which 
enables a more spontaneous design process. 

Figure 8: Communication between toolkit and Hololens 2. 

4.2 Authoring Interface 
In this section, we introduce the interface of MechARspace. The 
interface is separated into three modes, an Import Mode for users 
to import physical and virtual content, an Editor Mode for users 
to design and edit toy-AR interactions, and a Play Mode for users 
to visualize the authored AR application. To better understand the 
MechARspace workfow, we provide the following two examples. 

Consider a user who wants to create a self-opening physical chest 
with a virtual lock (Figure 9). First, he/she attaches the physical 
rotation module to the chest and imports it to the scene along with 
the virtual model of the lock (Figure 9 a). The user also needs to 
import the model of the physical chest if he/she intends to anchor 
the virtual lock to the chest. 

After importing the virtual and the physical content, the user 
can start editing their behaviors. The user selects the input node 
associated with discrete manipulation on the lock and registers it 
at the desired locked position (Figure 9 b). Meanwhile, the user 
selects the output node on the rotation module and demonstrates 
its behavior by manually opening the box (Figure 9 c). The user 
can fnish the authoring process by connecting recorded input 
with output through visual programming (Figure 9 d). Finally, the 
user can enter the Play Mode and play with the chest, which will 
automatically open when the lock is set to the predefned position 
(Figure 9 e). This interaction can be encoded as "manipulation 
(virtual) - discrete - local movement (physical)". 

(a) (b) (c) (d)

(e)

Figure 9: Workfow for an authoring task where the user ma-
nipulates a virtual lock and the door will open by itself. (a) 
Import the virtual and the physical content. (b) Demonstrate 
the input behavior by setting a lock to a given position. (c) 
Demonstrate the output behavior by manually opening the 
chest. (d) Connect the input with the output. (e) Test and play 
with the authored AR application. 

(a) (b) (c) (d)

(e)

Figure 10: Workfow for an authoring task where the user 
manually opens a chest and a ghost pops up. (a) Import 
the virtual and the physical content. (b) Demonstrate the 
input behavior by recording the start and end value of the 
attached rotation module while the user opening the chest. 
(c) Demonstrate the output behavior by moving the ghost 
upward while scaling it up. (d) Connect the input with the 
output. (e) Test and play with the authored AR application. 

In the second example, a user wants to create an AR version 
of the traditional toy "Jack-in-the-Box" (Figure 10), where the vir-
tual ghost has to gradually rise and scale up as the user opens the 
box. Then, it has to scale down and fall back as the box is closed 
by the user. The import process is similar to the frst case. In the 
Edit Mode, the user needs to select manipulation as input on the 
chest and demonstrates the entire process where the box is opened 
from zero to certain degrees (Figure 10 b). These series of input 
values continuously map to the virtual ghost’s global movement 
output, which is demonstrated by dragging its scale handle and hold-
ing it upwards simultaneously (Figure 10 c). This interaction can 
be encoded as "manipulation (physical) - continuous - global 
movement (virtual)". In the rest of this section, we will describe 
the operations of each step in detail. 
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4.2.1 Import Virtual and Physical Content. To import a physical 
toy to the scene, the user needs to attach a marker around it and 
defne its bounding box (Figure 11 a). To import virtual content, 
the user frst needs to select it from our library, which includes a 
variety of pre-created virtual models (Figure 11 b). Then, the user 
anchors it to a physical object (Figure 11 c). This step is optional as 
the virtual content can be independent and does not always follow 
the movement of any physical object. Finally, if an IoT module is 
mounted on the toy, the user must manually register that infor-
mation to the system by selecting the hardware module from the 
toolkit library (Figure 11 d). 

Figure 11: Interface in the import mode. (a) Draw a bounding 
box around the toy. (b) Select the virtual object from library. 
(c) Anchor the virtual content to the toy. (d) Import a module 
from the toolkit library. 

Figure 12: Diferent types of input (top row) and output (bot-
tom row) supported by MechARspace. 

4.2.2 Demonstrate Input Behaviors. As discussed in our framework, 
MechARspace enables users to demonstrate four types of input: 
spatial manipulation, collision, manipulation, and UI element (Fig-
ure 12 top). Except for collision, the other three types of input can 
be both discrete and continuous. The user demonstrates the input 
by frst dragging out the corresponding input node and connecting 
it to the associated object. For collision input and spatial placement 
input–which involves the interaction between two objects–the user 

has to draw another connection between them. Except for the colli-
sion input–which does not leave room for customization–the user 
has to demonstrate the input behaviors explicitly. In the interface, 
the input type is represented visually with a sphere (continuous) 
or a square (discrete). If the input is discrete, the user only needs to 
move the object to its desired status and click the button to regis-
ter (Figure 13 a). In that case, only that specifc status is recorded. 
For continuous input demonstration, the user needs to frst move 
the object (e.g., a knob) to the starting status and register it once 
(Figure 13 b-1). Then, he/she moves the object to the fnal status 
and registers it again (Figure 13 b-2). As a result, a series of values 
between the start point and the end point are linearly derived (e.g., 
knob values in the range between two positions). 

(a) (b-1) (b-2)

Figure 13: Demonstrate behaviors for (a) discrete input by 
registering status once and (b) continuous input by register-
ing the start (b-1) and end (b-2) status. 

4.2.3 Demonstrate Output Behaviors. As been discussed in our 
framework, MechARspace enables users to demonstrate four types 
of output: global movement, local movement sensory efect, and 
physics simulation (Figure 12 bottom). Users frst need to create 
output nodes for the corresponding objects. In our context, each 
output is a sequence of events. Both local and global movement 
can be demonstrated by directly moving, rotating, or scaling the 
virtual/physical object by hand (Figure 14). Once the movement 
demonstration is complete, the user can preview its outcome by 
sliding the progress bar. 

Progress bar
for preview

Figure 14: Demonstrate object movement by direct manip-
ulation: the user holds the virtual rocket along a trajectory 

    and record this process.

We compile the common sensory output to include in our li-
brary. Most of them have one or several parameters available for 
customization purposes. For example, a projectile efect can be cus-
tomized in size, speed, amount, and gravity. The user needs to set 
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start and end status of this efect by changing its parameters (Figure 
15). "1" and "2" on the slider bar represent the parameter value at 
the start and the end of the output, respectively. By demonstrating 
its parameter value at start and end, the user can create a sequence 
of events for output. Some sensory efects such as mesh explosions 
happen momentarily and do not allow users to set start and end 
status. As a result, they can only be connected to discrete input. 
For the physics simulation output, users do not have any room for 
customization, and hence the output behavior is determined by the 
collision input physics in real-time. 

Visual Effect

Start End

Figure 15: Demonstrate sensory efect output by tuning pa-
rameters. "1" and "2" represent the parameter value at the 
start and the end of the output, respectively. 

4.2.4 Program Toy-AR Interactions. The last step of the authoring 
process is to connect the input with the output, which can be done 
simply through drawing a line between the input node and the out-
put node. As been discussed in the framework, the trigger-action 
type is determined by whether the input is discrete or continuous. If 
the user connects the output with a continuous input, the output’s 
shape stays as a sphere, signaling a continuous trigger-action (Fig-
ure 16 a). If the user connects an output with a discrete input, the 
output turns to a square shape (Figure 16 b), indicating a discrete 
trigger-action. 

4.2.5 Test the AR Applications. Play Mode supports users to try 
out the interactive contents on-the-fy. In this mode, the system 
keeps tracking all the triggers authored by the user. This process is 
facilitated through reading sensor data from the IoT modules (e.g., 
current angle of the rotation module). Moreover, in Play Mode, 
all the trigger and action icons are hidden to give the user an 
unobstructed view (Figure 1 c). 

4.3 Implementation 
We build our system on Hololens 2 [3] using Unity3D (2020.3.0.f1) 
[11]. The MechARspace user interface is implemented with support 
from the Microsoft Mixed Reality Toolkit (MRTK) [8]. The tracking 
of the fducial markers in the physical toys is done through Vufo-
ria Engine [13]. The physics simulation of virtual content in the 
real world is enabled using the scene-understanding capability of 
Hololens 2 and Unity’s in-built physics engine. The virtual models 
and visual efects were downloaded from the Unity asset store [9] 
and then imported into the system. The real-time sharing of vir-
tual content among multiple users wearing Hololens is supported 

Figure 16: The connection for (a) continuous trigger-action 
and (b) discrete trigger-action. 

through through Photon Unity Networking (PUN) [5]. The MQTT 
broker which handles the data transfer between the IoT toolkit 
and Hololens 2, runs on a PC (Intel Core i7-8700K, 3.7GHz CPU, 
64GB RAM, NVIDIA RTX2080Ti GPU) connected to the local area 
network. 

5 APPLICATION SCENARIOS 

5.1 Storytelling Toys 

(a) (b)

Figure 17: House with a security system. (a) The user utilizes 
the character’s location as the input to trigger the rotation of 
the door as the output. Interaction encoding: "Spatial place-
ment (virtual) – discrete - local movement (physical)". (b) The 
user utilizes the character’s distance to the house as input 
to continuously increase the frequency of the buzzer and to 
blink the LED in red. Interaction encoding: "Spatial place-
ment (virtual) - continuous – sensory efect (physical)". 

Storytelling is often referred as the process of creating or en-
gaging in narrative structures, which can be a powerful tool for 
building skills in communication, collaboration, creativity, and re-
tention. Recent works [33, 92] have explored the possibilities of 
applying AR-enhanced toys as a way for users to physically con-
struct their stories by manipulating toys. At the same time, users 
could enact their stories by controlling virtual characters. Figure 17 
describes a straightforward story: "Bob is an engineer who designed 
a security system for his house. If a family member arrives at night, 
the door automatically opens. One day, a thief tried to break in. The 
security system worked as planned and triggered the alarm. Initially, 
the thief still wanted to take his chances, but the frequency of the 

https://2020.3.0.f1
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alarm got higher and higher and the warning light blinked as he ap-
proached the door. He eventually had to ran away." The details of the 
authoring process and interaction encoding is described in Figure 
17. Currently, MechARspace only supports a simplifed version of 
storytelling as its lack the functionality of replaying text and voice, 
which could be implemented in a future iteration of the system. 

(a) (b)

(a-1) (a-2)

(b-1) (b-2)

Linear actuator 
module

Figure 18: Parents can turn daily objects into playful items 
for their children. (a-1) The user taps the real hamburger 
with a fork and (a-2) triggers a virtual halo efect. To author 
this interaction, he/she uses the collision between the fork 
and hamburger as the input to trigger the visual efect as the 
output. Interaction encoding: "Collision (physical) – discrete 
- sensory efect (virtual)". (b-1) The user attaches the two ends 
of a linear actuator module to the bottom and the lid of a 
cookie jar. (b-2) By opening the lid, the user can dynamically 
change the size of a virtual ghost. To author this interaction, 
he/she uses the linear actuator module’s current length as 
the input to trigger the global movement of the ghost. Inter-
action encoding: "Local movement (physical) - continuous – 
global movement (virtual)". 

5.2 Transforming Daily Objects into Toys 
Kudrowitz et al. [55] explains that any tangible item that supports 
playfulness can be defned as a toy. With our plug-and-play toolkit, 
our system supports users’ spontaneous transformation of daily 
objects as a way to entertain everyday life with their imagination. 
For instance, a parent can attach a marker to a fork and use it to tap 
the hamburger the child is having for lunch. Once the fork collides 
with the hamburger, it triggers a virtual halo efect (Figure 18 a), 
which makes the dining experience more enjoyable. With the linear 
actuator module attached to the lid and bottom of a cookie jar,a 

person can linearly control virtual ghost size by moving the lid 
(Figure 18 b). 

Fire Fire 
distinguished

(a) (b) (c)

Figure 19: Physical toy fre truck with adjustable-height wa-
ter gun. (a) The user operates the virtual slider to control the 
height of the water gun, which is mounted on top of a linear 
actuator module. To author this interaction, he maps a range 
of values on the slider to a range of values on the linear ac-
tuator module. Interaction encoding: "UI element (virtual) – 
continuous - local movement (physical)". (b) The user presses 
the button on the fre truck as the input to spray virtual wa-
ter. Interaction encoding: "UI element (physical) - discrete – 
sensory efect (physical)". (c) If the virtual water collides with 
the physical building, the buzzer & light module–which in-
dicates a fre on that foor—will turn of. For this interaction, 
he/she uses the collision between building and virtual water 
to trigger the "turn of" action of the buzzer & light module. 
Interaction encoding: "Collision (virtual) - discrete – sensory 
efect (physical)". 

5.3 Making Miniature Toys More Realistic 
In many cases, the toys are simply the miniature replica of their 
real-world counterpart (e.g., toy trains, toy boats, toy cars). How-
ever, some real-world efects cannot be easily reproduced on these 
toys, thus reducing the realism (e.g., smoke coming out from the 
train) while playing. On the other hand, AR can fll this gap by 
simulating these events through visual efects. Figure 19 illustrates 
a fre truck toy in which the user controls the height of its water 
gun by manipulating a virtual slider (Figure 19 a). Meanwhile, the 
user can push a button module to spray virtual water (Figure 19 
b). Inside the toy building near the truck, each foor is placed with 
a buzzer & light module that initially lights up, indicating a fre 
(Figure 19 b). If the water is sprayed on that foor, the light will dim 
out, which implies the fre has been extinguished (Figure 19 c). 

Robot-shaped toys which provide multiple degrees of freedom 
for manipulation can also be made more realistic by virtual efect. 
For example, when the robot’s left arm (integrated with the rotation 
module) reaches out, the user sets it to emit a virtual laser beam (Fig 
20 a-1). When the robot arm is raised, the user sets it to initiate a 
virtual shield (Fig 20 a-2). Meanwhile, the user controls the physical 
arm of the robot (equipped with linear actuator) by moving a virtual 
fst in diferent directions (Fig 20 b). 
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(a-1) (a-2)

(b-1) (b-2)

Figure 20: Robot that can both be controlled and move on 
its own: (a) The user adjusts the robot’s parts to diferent 
poses and associates them with diferent visual efects. Inter-
action encoding: "Local movement (physical)– discrete - sen-
sory efect (virtual)". (b) The user sets the robot to perform 
the ’punch’ action when the virtual fst moves forward. In-
teraction encoding: "Spatial movement (virtual) - discrete -
local movement (physical)". 

Haptic Module

(a-1) (a-2)

(b-1) (b-2)

Figure 21: Multiplayer games (a-1): Two users manipulate 
their own virtual characters to play a soccer game. If either 
character collides with the physical ball, the ball will move 
in the opposite direction. Interaction encoding: "Collision 
(physical)– discrete - physics simulation (virtual)". (a-2) If 
the physical ball crosses the goal line, a virtual halo efect 
will be triggered. Interaction encoding: "Spatial movement 
(physical) - discrete -sensory efect (virtual)." (b-1) As the user 
toggles the switch, the physical cannon shoots two kinds of 
virtual efects. Interaction encoding: "UI element (physical) -
discrete - sensory efect (virtual)". (b-2) If specifc visual efect 
collides with the chest, the haptic module attached will start 
vibrating. Interaction encoding: "Collision (virtual) - discrete 
-sensory efect (physical)". 

5.4 Multiplayer Toy Games 
A study has shown that multiplayer games could be more fun and 
engaging than single-player ones [47]. Besides the pure entertain-
ment value, multiplayer games (e.g., board games) ofer players 
opportunities to connect and socialize with others. Meanwhile, the 
immersive AR experience can be shared with multiple people simul-
taneously. We propose two multiplayer games with AR-enhanced 
toys that can be authored with MechARspace. 

In the frst game, each user controls a virtual soccer player to 
move around the feld. If a virtual player hits a physical soccer ball 
equipped with movement module, the ball will move in the other 
direction (Figure 21 a-1). Once the soccer ball passes the goal line, 
it will trigger a virtual halo efect (Figure 21 a-2). 

In the second game, one user has a physical 3D printed canon 
with a switch module, while another has a physical basket and a 
haptic module (Figure 21 b-1). The frst user can toggle the switch 
module to fre either virtual stars or virtual bombs. If a virtual 
bomb hits the basket, it triggers the activation of the haptic module 
(Figure 21 b-2) on the basket held by the second user. 

6 USER STUDY EVALUATION 
We conducted a two-session user study to evaluate MechARspace’s 
overall system usability and its efcacy as a design tool. Six users 
were recruited (fve males and one female, aged 19-26). They have 
all experienced AR applications on either cell phones, tablets, or 
head-mounted devices. Four of our users have participated in toy 
making activities in some forms. One of them had taken the CAD-
related classes before. Another one of them once have once followed 
an online tutorial to fabricate a customized chessboard for himself. 
None of them is a professional AR/VR designer or programmer, con-
sidering that MechARspace is designed as an end-user authoring 
tool. None of the users had experienced our system before conduct-
ing the user study. The entire study took around 3 hours, and each 
user was paid 20 dollars. The study took place at our lab equipped 
with common digital fabrication tools such as a 3D printer and a 
laser cutter. We frst asked the users to walk through the Hololens 
2 ofcial tutorial to learn how to navigate the user interface with 
basic hand gestures. After the frst session, the user completed a 
survey with Likert-type (scaled 1-5) questions regarding the user ex-
perience of specifc system features and a standard System Usability 
Scale (SUS) questionnaire. After the second session, we conducted 
an open-ended interview to get subjective feedback on our system. 

6.1 Session One: System Usability Evaluation 
We designed six micro tasks for the frst user study session (Figure 
22). Each task contains one pair of toy-AR interaction for users 
to author. Half of these interactions (Task 1-3) use the toy as the 
trigger to actuate the AR content, and the other three (Task 4-6) use 
the AR content to actuate the toy. Our input and output categories 
are all covered in these interactions. Both continuous and discrete 
trigger-action types are included as well. The description of each 
task is detailed in Table 2. The goal of this session was to evaluate 
the usability of the MechARspace system and to explore the user 
experience of authoring toy-based AR applications inside a mixed 
reality environment. 
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Table 2: Detailed descriptions on the tasks in the frst session. 

Task Description Module Interaction Encoding 
T1 A user wields a physical hammer to smash a virtual golden egg None Collision - discrete - sensory 
T2 A user presses a physical button on the control panel to launch a virtual rocket Button module UI element - discrete - global movement 
T3 A user turns a physical knob to adjust the intensity of the virtual fame on the stove Knob module UI element - continuous - sensory 
T4 As a virtual thieve reaches the house, the frequency of physical buzzer increases Buzzer & light module Spatial placement - continuous - sensory 
T5 A user throws a virtual rock at the physical car to send it backwards Movement module Collision - discrete - physics simulation 
T6 A user changes the combination of a virtual lock to open the door Linear actuator module Manipulation - discrete -local movement 

Figure 22: Tasks in the frst session. 

0.00 0.17 0.33 0.50 0.66 0.83 1.00

The whole workflow is smooth and easy to follow. (Q8)

The user interface is clear and easy to use. (Q7)

I can easily import virtual content and anchor it to
physical items. (Q6)

I can easily draw bounding boxes around toys.(Q5)

The trigger-action metaphor is an intuitive approach to
program physical-virtual interactions. (Q4)

It is helpful to view animations of AR and movements of
physical toys simultaneously while authoring. (Q3)

It is intuitive to define AR animations and toy behaviors
through direct manipulation. (Q2)

The toolkit can help me easily transform ordinary toys to
be AR compatible. (Q1)

Strongly disagree Slightly disagree Neutral Slightly agree Strongly agree

0                 1                  2                 3                 4 5                 

Figure 23: Likert-type questionnaire results of the frst ses-
sion. 

6.1.1 Result and Discussion. The Likert-type question ratings are 
shown in Figure 23. In general, users found the workfow easy to 
follow (Q8: avg=4.5, sd=0.83), and the interface clear (Q7: avg=3.83, 
sd=0.75). "Once I walked through the tasks on the frst round, I was 
confdent I could perform some customization all by myself (P3)". The 
prerequisite procedures for loading virtual (Q6: avg=4.33, sd=1.21) 
and physical (Q5: avg=4.5, sd=0.83) objects into the scene were 
also considered straightforward. Most of them acknowledged that 
the trigger-action metaphor was suitable for toy-based AR appli-
cation creation (Q4: avg=4.5, sd=0.54)."The action-reaction type of 
programming logic was super easy to follow, and I feel it will cover 
most scenarios (P1)". Meanwhile, users appreciated the immersive 
authoring environment, which allows them to concurrently view 

the toy and its associated AR animations (Q3: avg=5, sd=0). "I like 
the fact that I can view the toy and AR at the same time, giving me a 
look at the whole picture (P6)". Also, they found that programming by 
demonstration could greatly streamline the programming process 
(Q2: avg=4.83, sd=0.41). "There is nothing more intuitive to defne the 
behaviors [of virtual and physical objects] than directly manipulating 
them (P5)". All users were in favor of the plug-and-play IoT toolkit 
we provided to enrich the AR experience (Q1: avg=4.83, sd=1.03). "I 
felt like I could simply attach it to many ordinary things and animate 
them in AR (P6)". During the user study, we observed that most 
users (fve out of six) struggled when they initially started learning 
how to use hand gestures to navigate the AR interface in Hololens. 
Two of them attributed this difculty to the lack of haptic feedback 
when interacting with Hololens’s virtual menus. Similar observa-
tions have been made in prior works which also adopt Hololens as 
the testing platform [81, 93]. However, learning to use the system 
itself went smoothly once they passed that threshold. the standard 
SUS survey result for the entire study received 83 out of 100 with a 
standard deviation of 10.58, which indicated high usability of the 
whole system. 

6.2 Session Two: Design and Implement 
AR-enhanced Toys 

We sought to examine MechARspace in a freestyle DIY session. In 
this session, we began by asking participants to capture, design, and 
implement their ideas for an AR-enhanced toy. This brainstorming 
and quick-prototyping of the toy took about 80 minutes. At this 
stage, participants were already familiar with the system, but we 
walked them through all the available potential toy-AR joint inter-
actions by explaining to them the interaction model we described 
in section 3. A researcher was present to clarify any questions the 

https://avg=4.83
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Figure 24: AR-enhanced toy design outcomes from the second session of user study. 

Table 3: Detailed descriptions on the AR-enhanced toys made by users in the second session. 

Participants Description Module Interaction Encoding 
P1 A user presses the physical button on the magic wand to cast a spell. Button module UI element - discrete - sensory efect 
P2 A user throws a virtual ball to strike down the physical bowling pin. Rotation module Collision - discrete - local movement 

P3 
As a user grabs a toy frog closer to the virtual demon, 

the danger sign will become larger. None Spatial placement - continuous - global movement 

P4 
A user adapts a traditional water gun to let it spray virtual water. 
He/she can then spray water on a physical car to push it back. 

Button module 
Movement module 

UI element - discrete - sensory efect 
Collision - discrete - physics simulation 

P5 
If a virtual character controlled by a user jumps on a platform, 

he will be elevated to reach the golden egg. Rotation module Spatial placement - discrete - local movement 

P6 
A user holds the hilt of a saber, 

turns the knob to change the intensity of virtual saber efect. Knob module UI element - continuous - sensory efect 

participant may have. Participants were given the freedom paper-
prototype their designs, implement them using fabrication tools 
(e.g., laser cutter) inside our laboratory, and then enhance the toys 
by using MechARspace to customize the toy-AR interactions. If 
their intended virtual models or visual efects were not in our li-
brary, we would download and import them to the library. With 
the fabricated toys and these virtual content, users could fnally 
validate their designed joint interaction with MechARspace. In the 
end, we held an in-depth discussion with our users regarding their 
perception of empowering a DIY-ed toy with AR technology in 
general. 

6.2.1 Result and Discussion. Figure 24 and Table 3 showcase the 
toys created by the users during this open creation session. Each 
user’s toy consists of at least one pair of physical-virtual interaction. 

The purpose of our study is to validate a unifed framework 
that can be useful to novice designers and DIY-ers. Overall, partic-
ipants found the interaction model to be comprehensive enough 
that they were quickly able to capture their ideas and prototype 
them. “Initially, I thought designing the virtual aspect of my toy–and 
the mechanical part too–would be much more difcult and need more 
tries, but these UIs really give me a good starting point(P4)". 

Another common theme across participants was the understand-
ing of the motivation and the signifcance behind the system. “I 
can defnitely see the future of toys, where they are unlimited by 
physical constraints. . . This will bring about a new relationship with 
the environment and the virtual parts of it (P6)". 

One of the participants was enthusiastic about the prospect of 
using the system for storytelling as she works with children. “The 
AR increases the dimensions and possibilities of the toy. I can think 
of a scenario where I give each kid an action fgure of their choice. 
Then, with the AR and the modules, I get them swords, hammers, 
shields.Then, they go to fght giant spiders and monsters. Now, this is 
a full-blown adventure (P3)". 

An important concern that was addressed with regard to the 
participants’ non-technical backgrounds is that programming AR 
applications no longer seems unattainable. "I used to think program-
ming AR would be complicated. But this input-output model you 
proposed really simplifes a lot of things make the whole process less 
daunting. I feel like I can just create a program that just connects 
lines (P1)". Participants gave emphasis on the usefulness of using 
AR content enabled by fast customization: “I can download virtual 
content, instantly try it out without further delay. If I am not satisfed 
with it I can simply delete it and try another. (P2)". Conversely, the 
virtual content hovering on or close to the physical toy made it 
simpler and more intuitive for participants to use as guiding points 
and thus, allowing them to “have the benefts of both worlds (P5)". 

7 LIMITATIONS AND FUTURE WORKS 

7.1 The Ceiling of the Interaction Model 
The proposed input-output interaction model does have its ceilings. 
First of all, this model assumes the input condition and output event 
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are both predictable so that users can explicitly demonstrate them 
respectively and link them together. However, there may exist some 
random events during toy-AR interactions. In the second session of 
our user study, one user initially wanted to design an AR version of 
the "whack a mole [14]" toy where he could hold a physical hammer 
to smash virtual moles that pop up randomly from the ground. In 
that case, the random behaviors of the mole cannot be explicitly 
authored by the user. Mainstream game engines have resorted to 
machine learning technology (e.g., Unity machine learning agent 
[10]) to create objects with random behaviors (e.g., NPCs) without 
predefnitions. An alternative approach is to introduce the random 
timer as a input that can trigger events. In the future, we will explore 
the possibility of employing similar technologies in our system. 

In addition, MechARspace only supports simple and direct map-
pings between triggers and actions. Some complex mappings such 
as condition (an action only reacts to a trigger given some pre-
conditions, such as location, time, or other triggers) or parallel 
(an action only reacts when multiple triggers are activated concur-
rently). While most toys are straightforward to play with, some 
others (e.g., puzzle cards) do have intricate game logic. One possi-
ble solution would be to introduce a more comprehensive visual 
programming logic similar to the ones in CAPturAR [82], Ivy [31], 
and FlowMatic [91]. For example, the "loop" construct introduced 
in Ivy [31] could be applied to program a virtual character who 
performs some routine tasks. 

7.2 Creation and Integration of Virtual & 
Physical Content into the Scene 

Currently, the virtual models and visual efects of MechARspace are 
preloaded into the library. Future iterations of MechARspace should 
support real-time import of virtual content from popular online 
platforms (e.g., Unity asset store [9]) to support more spontaneous 
creations. For a physical content, we asked users to integrate it into 
the scene by attaching a marker and specifying its bounding box. 
Such a process could be streamlined by scanning the geometry of 
physical objects in real-time. However, the scanning precision of 
Hololens 2 is too low for this task. In the future, we will explore 
the possibility of using external devices (e.g., depth camera [4]) to 
scan the model and sending it directly into the Hololens 2. 

7.3 Crowding of Virtual Content 
Right now, the UI elements are displayed in-situ besides the virtual 
content. While most of the users appreciated this feature since "the 
spatial relationship between them brings more logical sense to the 
creation process (P2)". Some of them also expressed concerns that 
too many overlapping virtual content would inevitably crowd the 
interface if several interactions need to be authored concurrently. 
One possible solution to this issue would be to display the UI ele-
ments adaptively. For instance, we can decrease the opacity of the 
trigger-action link that is not currently been authored by the user. 

7.4 Tracking Toys 
We used fducial markers attached to the toys to track their real-
time positions. This approach is susceptible to occlusion, and the 
computation capability of Hololens 2 constrains the tracking speed 
and frequency. During the user study, some of our users expressed 

frustration when the objects lost track. "Whenever I move the ham-
mer too quick, it will lose track and interrupt my play. It is really 
annoying (P2)". In the future, we will explore the possibility of de-
signing a dedicated IoT toolkit (e.g., RFID tag [80]) for tracking or 
employing markerless vision-based tracking technology [29]. 

7.5 IoT Toolkit 
As for now, every module is a standalone device with a battery, a 
microprocessor, sensors, and actuators integrated, which inevitably 
makes them bulky, especially when they are attached to small-sized 
toys. In the future, we will develop a CAD plugin for our toolkit, 
which would allow users to pre-allocate space for these modules. 
In this way, the toolkit can be integrated inside instead of outside 
the toy. 

8 CONCLUSION 
In this work, we present MechARspace, an authoring tool that en-
ables novice designers and DIY-ers to create AR applications based 
on their physical toys. MechARspace allows users to program cus-
tomized toy-AR interactions in-situ by demonstration while using 
relevant contextual elements as references. We start by compiling 
the bidirectional interaction model that maps various types of toys’ 
actions to responsive behaviors of virtual contents. Following this 
interaction model, we design our immersive visual programming 
interface so that users can author corresponding interaction modal-
ities through simple trigger-action programming. Furthermore, we 
develop a collection of IoT modules to help designers efortlessly 
integrate their toys into the AR scene without lengthy electronic 
prototyping processes. To explore the capability of MechARspace, 
we demonstrate four groups of applications scenarios. Through a 
two-session user study, we frst proved our system’s usability and 
then its utility as a design tool to help impromptu AR-enhanced 
toy design. Thus, MechARspace provides the HCI community with 
a unifed framework and an open landscape into future designs of 
AR authoring tools for toys. 
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