
MechARspace: An Authoring System Enabling Bidirectional
Binding of Augmented Reality with Toys in Real-time
Zhengzhe Zhu∗ Ziyi Liu∗ Tianyi Wang
zhu714@purdue.edu liu1362@purdue.edu wang3259@purdue.edu

School of Electrical & Computer School of Mechanical Engineering, School of Mechanical Engineering,
Engineering, Purdue University Purdue University Purdue University

West Lafayette, IN, USA West Lafayette, IN, USA West Lafayette, IN, USA

Youyou Zhang Xun Qian Pashin Raja
zhan3264@purdue.edu qian85@purdue.edu praja@purdue.edu

School of Electrical & Computer School of Mechanical Engineering, School of Mechanical Engineering,
Engineering, Purdue University Purdue University Purdue University

West Lafayette, IN, USA West Lafayette, IN, USA West Lafayette, IN, USA

Ana Villanueva Karthik Ramani
villana@purdue.edu ramani@purdue.edu

School of Mechanical Engineering, School of Mechanical Engineering,
Purdue University Purdue University

West Lafayette, IN, USA West Lafayette, IN, USA

Figure 1: An overview of MechARspace workfow. (a) A user starts with a chest (physical toy) which contains a rotation module
(part of our IoT toolkit). The chest, with its module, is imported into the AR scene by the user defning a bounding box
around it. (b) The user authors the interaction between the virtual ghost and the rotation module of the physical chest through
demonstration and input-output visual programming. The ghost pops out of the chest with respect to the angle the user sets
for the rotation module. (c) The user plays with his authored AR-enhanced toy.

ABSTRACT
Augmented Reality (AR), which blends physical and virtual worlds,
presents the possibility of enhancing traditional toy design. By

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545668

leveraging bidirectional virtual-physical interactions between hu-
mans and the designed artifact, such AR-enhanced toys can provide
more playful and interactive experiences for traditional toys. How-
ever, designers are constrained by the complexity and technical
difculties of the current AR content creation processes. We pro-
pose MechARspace, an immersive authoring system that supports
users to create toy-AR interactions through direct manipulation and
visual programming. Based on the elicitation study, we propose a
bidirectional interaction model which maps both ways: from the toy
inputs to reactions of AR content, and also from the AR content to
the toy reactions. This model guides the design of our system which
includes a plug-and-play hardware toolkit and an in-situ authoring
interface. We present multiple use cases enabled by MechARspace

https://orcid.org/0000-0001-9935-0518
https://orcid.org/0000-0002-1270-2734
https://orcid.org/0000-0003-1976-7992
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526113.3545668
mailto:ramani@purdue.edu
mailto:villana@purdue.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3526113.3545668&domain=pdf&date_stamp=2022-10-28

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

to validate this interaction model. Finally, we evaluate our system
with a two-session user study where users frst recreated a set of
predefned toy-AR interactions and then implemented their own
AR-enhanced toy designs.

CCS CONCEPTS
• Human-centered computing Human computer interaction
(HCI);

KEYWORDS
Augmented Reality, immersive authoring, program by demonstra-
tion, modular IoT toolkit

ACM Reference Format:
Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin
Raja, Ana Villanueva, and Karthik Ramani. 2022. MechARspace: An Author-
ing System Enabling Bidirectional Binding of Augmented Reality with Toys
in Real-time. In The 35th Annual ACM Symposium on User Interface Software
and Technology (UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3526113.3545668

1 INTRODUCTION
Augmented Reality (AR) leverages forms and features of both phys-
ical and virtual environments. AR thus provides designers with the
potential to enhance physical toys with visualizations and inter-
actions beyond physical constraints. A handful of AR-enhanced
toys have recently emerged, from commercial products like Mario
Kart Live [7] and Lego Hidden Sides [6] to research projects like
Project Zanzibar [80] and Checkmate [36]. However, existing tools
for creating AR applications for these toys are dedicated for the use
by experienced professionals and have high technical barriers to
entry [11, 12, 61]. Thus, novice designers miss out on the opportu-
nity of imagining, designing, and implementing AR-enhanced toys
based on their unique ideas. To address this gap, we develop an
authoring system which empowers end-users to quickly prototype
AR applications to personalize their physical toys.

The frst step towards developing the authoring system is to
understand the nature of toy-AR interactions. We summarize that
these interactions take place bidirectionally between physical and
virtual worlds: (a) physical toys as triggers to actuate AR content,
(b) AR content as triggers to actuate physical toys. As an example
of (a), in LEGO Hidden Side [6], users can manipulate the LEGO
blocks to unlock a hidden storyline displayed using AR. As for (b),
in the racing car game, Mario Kart Live: Home Circuit [7], users
can throw a virtual bomb on opponents’ physical cars to stop them
as if the bomb were real. In (a), the toys serve as tangible user
interfaces (TUI) giving users access to the virtual world. In (b),
the reactions of the toys to AR animations make the interaction
more realistic and immersive [74]. To the best of our knowledge, a
unifed design framework for bidirectional toy-AR interactions has
not been established in prior works.

Conventional AR authoring tools (e.g., Unity3D [11], Unreal [12],
ARCore [1], ARKit [2], etc.) decouple the programming and testing
environment [61, 76, 81]. Developers have to project the status of
the 3D physical toy from diferent perspectives while programming
AR animations, which requires expertise and is time-consuming [59,
91]. In contrast, the immersive experience supported by AR-HMD

fosters the evolution of authoring workfows in an in-situ approach
[81]. By blending the authoring process into the AR environment,
users have contextual information—the status viewed from diferent
perspectives—of the physical toy and its associated AR content.
For example, let us imagine a scenario in which a user wants to
program a physical toy such as a Transformer robot, which can
trigger diferent special efects (e.g., fre, laser beam) along with
corresponding fghting poses (e.g., arms forming an X or a T) using
AR. The user can simply change the robot to fghting poses and
program the associated AR animations/efects on the spot, while
referring to the robot’s pose for spatial context. In addition, the
WYSIWYG (What You See Is What You Get) metaphor [21] enables
users to create animations through direct manipulation within AR
without writing lines of code, which lower the entry barrier of AR
authoring [74, 81].

Similar to authoring AR content, authoring physical behaviors
of toys should be equally intuitive and accessible to end-users.
To lower the barriers of physical programming, researchers have
designed various robotics modules can record the user’s demonstra-
tion and play it back to animate the robot [66, 66, 71, 75]. With such
tools, users can design and create without any low-level program-
ming knowledge. Inspired by these works, we develop a toolkit
that allows users to embed virtual efects to the physical structures
of toys, and then create an interactive virtual-physical experience
through programming by demonstration.

We propose MechARspace, an in-situ authoring system that sup-
ports the real-time creation of AR applications to make toys more
playful. We explore the design space of physical-virtual interactions
between AR and toys and use it to guide our system design. The
system includes two parts: a plug-and-play toolkit designed to be
embedded into common toys, and an authoring interface built on
a pair of optical see-through AR glasses (i.e., Hololens 2 [3]). The
toolkit encapsulates diferent sensors and actuators so that users
can efortlessly upgrade toys with AR capabilities without going
through lengthy electronic prototyping processes. This toolkit is
IoT-enabled, which means it will be constantly connected to the
AR headset once imported to the scene. MechARspace facilitates in-
tuitive authoring of both AR animations and toys’ actions through
direct manipulation, while referring to the physical toy for a con-
textual reference. Through a trigger-action visual programming
interface, users can create bidirectional interaction by utilizing their
inputs on toys to trigger AR animations and vice versa. Furthermore,
with the real-time sensing and actuating capability of the toolkit,
users can instantly play with the authored toys which fosters rapid
design exploration.

We propose the following contributions:

• A unifed framework of the bidirectional physical-virtual
interaction model for the AR-enhanced toys.

• A plug-and-play IoT-enabled modular toolkit with sensing
and actuating capability that enables ordinary toys to inter-
act with AR.

• An in-situ and easy-to-use authoring interface for creating
toy-based AR applications through demonstration and visual
programming.

https://doi.org/10.1145/3526113.3545668

MechARspace UIST ’22, October 29-November 2, 2022, Bend, OR, USA

• A wide range of example toys with their AR applications to
validate the applicability of our interaction model and the
extensive reach of our authoring system.

2 RELATED WORK

2.1 Bidirectional Interactions in AR-enhanced
Toys

A toy is defned as a tangible that is engaging to play with [55].
Recently, researchers have discovered that combining emerging AR
technology with traditional toys can signifcantly expand the inter-
action space and increase the playfulness [40, 41, 77]. AR generates
a composite view for the user, which provides the capability for toys
to fuse the matters from virtual and physical worlds [42, 60, 77].
In general, we classify the interactions between AR and toys into
two directions.

Physical toys as triggers to AR content: Interactions in this cate-
gory are inspired by the concept of tangible user interfaces (TUIs)
[48, 49] which translates the manipulation of physical objects (as
triggers) into animations of AR content. For example, static or dy-
namic virtual models are anchored onto tracked toys to follow
their movement [21, 38]. Apart from this location-oriented bind-
ing, AR can be controlled by tangibles through logical connections.
RobotQuest [57] is a mixed reality gaming platform where players
can control a physical robot to repel virtual enemies projected on
the foor. Zhou et al. [92] proposed an AR storytelling tool with
which users unlock storylines by manipulating a cube. Project
Zanzibar [80] proposed an interaction scenario where users trigger
diferent AR animations by moving and rotating toy fgures in the
scene.

AR content as triggers to actuate physical toys: Toys nowadays are
often equipped with actuators (e.g., servos, motors, LEDs) [28, 43]
which enable them to actively react to corresponding AR con-
tent. Prior works have exploited AR to create in-stu user inter-
faces for programming both industrial [50] and recreational robots
[26, 37, 85]. Similarly, exTouch [51] utilized an AR-mediated mobile
interface to translate users’ touchscreen interactions into physical
objects’ actuations. Meanwhile, researchers have sought to rein-
force the sensation that the virtual and real elements coexist by
allowing AR to actuate the physical world [23, 74]. For example,
MotionBeam [84] proposed an interaction scenario where a cartoon
character projected onto the wall can jolt a picture frame out of
place. ColabAR [79] introduced a haptic module which will vibrate
whenever it collides with a virtual object. In Kobito [18], imaginary
agents can move real objects (e.g., a tea caddy) on the table to make
themselves more realistic.

A more comprehensive summary of bidirectional physical-
virtual interactions could be found in the recent AR and robotics
survey paper from Suzuki et al. [74].

Interactions in the previously mentioned systems are predeter-
mined for specifc applications by professional developers. The lack
of novice-friendly development tools impedes novice designers’
ability to integrate personalized AR experiences to their toys. Pre-
vious AR authoring systems have allowed users to dynamically
superimpose virtual content on top of physical items based on their
preferences [32, 53, 78]. However, these authoring systems only
enable one-direction of interaction authoring (i.e., AR content is

simply superimposed on the physical objects). To capture a more
extensive design space, we propose MechARspace, an end-user
authoring system that facilitates the bidirectional virtual-physical
authoring space of toy-AR interactions.

2.2 Immersive AR Authoring Tools
Development tools for creating AR applications have long been the
focus within the HCI community [61, 67, 68, 70, 78]. Traditional
desktop-based AR development tools such as Unity [11] and Unreal
[12] decouple the programming and testing process. Alternatively,
immersive authoring has been proposed to directly blend the au-
thoring process into the AR interaction space [58, 83, 90]. This
approach allows for intuitive 3D manipulation instead of 2D pro-
gramming [67], and accelerates the build-test cycle by enabling
on-the-spot evaluation of authored artifact [59]. Following this
paradigm, Window Shaping [46] and SceneCtrl [89] empowered
the creation of static 3D models and virtual scenes by leveraging
the spatial perception of AR devices. ARAnimator [87] and Pup-
petPhone [16] allowed users to author an animation sequence of a
virtual character using a smartphone as the motion controller.

However, AR applications created by these tools are not interac-
tive, and thus, cannot respond to users’ actions or real-world phe-
nomena. Researchers have sought to incorporate diferent sources
of input into the authoring workfow to drive dynamic AR ani-
mations. Ng et al. [69] facilitated situated AR games development
with users’ real-time location as trigger. SpatialProto [65] achieved
prototyping of interactive AR through capturing human motion
for associating with animated virtual content. GestureAR [81] pre-
sented an authoring system which supports end-users to defne
customized gestures for freehand AR applications. ProGesAR [86]
allowed users to quickly design proxemic and gestural interactions
with real-world IoT by prototyping them in AR.

In particular, several authoring systems have utilized the status
of tangible objects as input. iaTAR [58] enabled users to map fdu-
cial markers to common UI elements (e.g. buttons, sliders) to design
a tangible AR interface. RealitySketch [76] allowed users to make
sketched graphics responsive by binding them with moving ob-
jects. With these tools, users freely drew mappings from real-world
tangible objects to AR content.

In MechARspace, we take a step further by enabling the author-
ing of bidirectional interactions — MechARspace does not only
augment passive physical objects, but also incorporates with ac-
tuated physical objects by leveraging IoT modules, so that users
can quickly author an interactive and bidirectional experience for
AR-enhanced tangible objects. With immersive authoring, we allow
users to constantly refer to their toys for more context information
and to test their ideas immediately. Using this strategy, users can
quickly validate and iterate their ideas.

2.3 Programming by Demonstration
Programming by Demonstration (PbD) [56, 64] is a technique that
allows users to defne interactivity by performing examples of the
intended behaviors. It can greatly enhance end-user development
by overcoming low-level programming details [61, 63]. It was frst
introduced to the robotics industry [20, 24] where operators demon-
strate movements for robots to repeat. Thanks to the embedded

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

sensors with kinetic memory, this process could be done intuitively
by direct manipulation [30]. Similarly, Reactile [75] proposed a
tabletop TUI customization approach by manually arranging the
objects to desired states.

Meanwhile, PbD also fnds its applications in the virtual space.
Arora et al. [19] allowed users to author AR/VR animations by
holding virtual objects through designated trajectories. AdapTutAR
[45] captured body gestures over a given period to generate AR
tutorials. Recently, Wang et al. [81] combined PbD with trigger-
action visual programming, where the demonstrated hand gestures
and AR animations are linked as input and output respectively.

Inspired by prior work, MechARspace applies the metaphor
of programming by demonstration to tangible and virtual objects
alike. Users’ interactions with AR content and actions upon tangible
objects are both recorded and later connected together with trigger-
action visual programming. Utilizing this strategy, users can defne
the bidirectional interactivity between input and output elements.
Furthermore, our immersive authoring environment can supple-
ment PbD with rich and in-situ visualization of the demonstrated
outcome, which brings contextual awareness to the workfow [25].

2.4 Modular IoT Toolkit
Developing physical devices and interfacing them to conventional
programming languages has always been difcult for end-users
[34, 66, 71]. To address this gap, Phidgets [34] pioneered the ap-
proach of packaging input and output devices into modules to
hide implementation and construction details from users. Similarly,
Physikit [44] introduced an easily confgurable toolkit that can be
embedded to everyday objects, allowing users to physically visu-
alize IoT data in their homes. To further lower the entry barriers,
Topobo [71] and MorphIO [66] adopted the concept of program-
ming by demonstration for their modular toolkit.

Recently, researchers have sought to utilize modular IoT toolkit
to enrich AR experiences [54]. The most common application sce-
nario is to utilize capacitive sensing [35, 88], or RFID modules [80]
for tracking tangible objects. Compared to traditional vision-based
tracking, they are less susceptible for low light or occlusion, thus
can provide an uninterrupted experience [73, 80]. Similarly, IMUs
have been utilized to detect the gesture input for manipulating
AR content [39] and calculating the toy’s absolute position [27].
Apart from exploiting toolkit’s sensing capability, Cao et al. [26] and
Glenn et al. [33] presented modular IoT that could be dynamically
actuated by AR animations.

Inspired by these works, we introduce a collection of modular
components for our toolkit that could help record human input
as well as actively react to dynamic AR animations. Our setup
is designed to resonate with the the bidirectional toy-AR interac-
tion model. The modules are intended to provide a plug-and-play
experience and help toy designers quickly prototype diverse AR
experiences based on traditional toys .

3 INTERACTION FRAMEWORK FOR AR AND
TOYS

The interactions between AR and toys are currently scattered across
independent systems, creating somewhat a fragmented research
landscape. To address this problem, we conducted an elicitation

study which helps us combine the afordances of AR and toys to
propose a unifed framework that summarize these bidirectional
interactions.

3.1 Input and Output Model
The input-output model has been widely adopted by previous inter-
action authoring systems including GesturAR [81], Trigger-Action-
Circuits [17], and Kitty [52]. In this model, an interaction involves
two components, an input that is initiated by a subject, and an
output that is generated by an object in response to the input. The
toy-AR joint interaction adopts a similar pattern where the input
is the toy’s action and the output is the behavior of virtual con-
tent, or the other way around. More specifcally, using a physical
toy as input refers to the process where a user directly moves or
manipulates the toy into a certain status and triggers an output.
For instance, moving a Transformer toy robot from place A to B.
Meanwhile, the output refers to the process in which the objects
project certain visualizations. For example, sparks coming out from
the Transformer’s legs.

To categorize input and output interactions between AR and toys,
we analyzed DIY-ed toys made by undergraduate students from a
senior level toy design class. This class has been taught for about
20 years as an innovative approach for teaching computer-aided
design (CAD) and prototyping to mechanical engineering students.
At the end of each semester, students (in groups of 4-5) must present
their prototype implementations, which usually involve the design
of both hardware and software. These presentations were recorded,
which helped us better understand the complexity and capabilities
of each toy during our analysis. Two co-authors of this paper have
been serving as teaching assistants of this class for the past two
years, so they have frst-hand knowledge of students’ toy design
processes. We examined a total of 78 toys made by students in
the last three semesters (Figure 2). Based on the taxonomy of toys
developed by Kudrovitz et al. [55], we classifed these toys into the
following groups: Fantasy (38), Construction (18), Sensory (11), and
Challenge (7). We analyzed common features in the toys, in terms of
fabrication (hardware parts) and programming (logic and software).
Likewise, we summarized the purpose of each toy and envisioned
how they could be AR-enhanced within the context meant by the
designers. Based on this elicitation process, we compiled a detailed
classifcation of input (Figure 3) and output (Figure 4) interactions
across AR (virtual content) and toys (physical content). Each cell in
these fgures depicts a single example interaction, but represents
an entire class of opportunities.

Figure 2: Representative toys designed in the toy design
class.

MechARspace UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Spatial Placement Collision Manipulation UI Element

Vi
rt

ua
l

Ph
ys

ic
al

V1

P1 P2

V2 V3 V4

P3 P4

Figure 3: Input taxonomy.

Input 1: Spatial placement. Spatial placement relates to the
input class in which the user moves an object (physical or virtual)
from one place to another. This type of input is common in board
games where toy pieces’ and fgures’ movements are meaningful
to the game’s progress. For instance, in StoryMakAR [33], users
place the virtual character on diferent places to unlock respective
storylines.

Input 2: Collision. Collision is a special case of spatial place-
ment in which the user holds an object (virtual or physical) to
hit another one directly. For example, in the popular toy "Wack-
A-Mole", the user wields a physical hammer to smash a physical
mole. Similarly, virtual content can also be made to collide with a
physical (or virtual) object. For instance, in Motion Beam [84], the
user controls the virtual character to hit the picture hanging on the
wall.

Input 3: Manipulation. Some toys allow users to change their
internal status or layout without moving it spatially. For instance,
users can move the arms of a Transformer toy robot to form diferent
poses. Meanwhile, virtual items with intricate structures could also
be manipulated (e.g., a virtual lock to be set at combination 1-2-3-4
to close a chest).

Input 4: UI element. Due to legacy bias [22], traditional UI
elements such as buttons and knobs are still favored by the users
for giving input to the toy. The digital twins of these UI elements
are also prevalent in virtual space.

Global Movement Physics Simulation Local Movement Sensory

Vi
rt

ua
l

Ph
ys

ic
al

V1

P1 P2

V2 V3 V4

P3 P4

Figure 4: Output taxonomy.

Output 1: Global movement. Most car-like toys support this
output as they are designed to move at relatively long distances
from the user. Similarly, virtual objects can travel around space
along any trajectory predefned by the user [19, 81].

Output 2: Physics simulation. This type of output is a spe-
cial addition to the global movement. The diference is that the

trajectory of the movement follows the laws of physics and cannot
be explicitly defned by the user. For example, a virtual ball would
bounce up and down on the physical desk and a physical toy car
would bounce back after hitting a virtual wall.

Output 3: Local movement. As opposed to the global move-
ment, local movement refers to parts of the toy moving relative to
its main body. For instance, the top of the chest opens, or the arm
of the robot waves. Depending on the user’s preference, the part
that moves locally can be virtual or physical [81].

Output 4: Sensory efect. We adopt the word "sensory" from
Kudrowitz et al.’s paper on toy taxonomy [55], which defnes sen-
sory play to involve intentional entertaining of the senses such as
hearing, vision, and touch. For instance, the haptic feedback from
squishing a ball and the sound efect of a music box are physical
examples of this output. In the virtual world, the sensory output
is usually rendered in the form of a visual efect that cannot be
perceived in the real world.

3.2 Creating Bidirectional Toy-AR Interactions
through Trigger-action Connection.

To simplify the authoring experience, we adopt a trigger-action
programming model in MechARspace. In this bidirectional interac-
tion model, a physical toy input can trigger the AR content actions
and vice versa. Based on the aforementioned taxonomy of input
and output, users can create numerous types of interactions by
connecting diferent triggers to actions. To further increase the
diversity of this interaction space, we separate the mapping from
input to output as follows:

Discrete trigger-action (Figure 5a) that if the defned trigger
event (e.g., a button pressed) occurs, the output actions (e.g., a chest
opens) will be activated.

Continuous trigger-action (Figure 5b) that allows users to
specify analog relationships between input parameters (e.g., a physi-
cal or virtual knob’s value) and output parameters (e.g., the opening
angle of a chest).

Figure 5: Comparison between discrete (a) and continuous
(b) trigger-action that connect input to output.

For discrete trigger-action, we register input as the specifc status
of the object. For continuous trigger-action, we register input as a
series of object statuses. In other words, the trigger-action type is
determined by how input is registered. It is worth noting that the
collision input cannot be used for continuous trigger-action as it
happens instantly. Moreover, users can connect multiple actions to
one trigger to activate them together or connect multiple triggers

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

to one action so that every trigger can activate the same action.
MechARspace rejects the connection between the mismatching
triggers and actions to ensure valid authoring. For instance, the
physics simulation output of the physical toy can only be connected
to the collision input of virtual content. To enlarge the interaction
space, MechARspace allows users to connect physical input to phys-
ical output (e.g., light up the physical LED by pressing a physical
button), and virtual input to virtual output (e.g., enlarge a virtual
character by turning a virtual knob) that are beyond the scope
of virtual-physical joint interactions. Considering the authoring
of such unilateral interactions have been thoroughly explored in
prior works [61, 62, 66, 71], we will focus on authoring bidirectional
interactions in the remaining sections.

In short, our interaction framework consists of three dimensions:
input entity, output entity, and trigger-action type. In the later
sections, we will demonstrate the extensiveness of our framework
with illustrative use cases. For clear reference back to this frame-
work, we will encode each interaction with the combination of
elements from this framework. For instance, Figure 1 shows a user
who releases a virtual ghost as he opens the physical chest. This in-
teraction is encoded as "manipulation (physical) - continuous
- global movement (virtual)".

4 SYSTEM AND DESIGN

4.1 Modular IoT Toolkit
MechARspace comes with eight IoT modules (Figure 6 a) that can
be attached to a traditional toys (Figure 6 b) for them to have AR
compatibility. Every module is a standalone device with a battery,
a microprocessor, and sensors/actuators built-in, so that users with-
out any circuitry knowledge can use it to prototype AR-enhanced
toys.

Button
module

Switch
module

Knob
module

Linear actuator
module

Rotation
module

Haptic
module

Movement
module

Buzzer
& Light
module

(a) (b)

Figure 6: (a) Overview of the IoT modules in MechARspace.
(b) Modules attached to toys.

4.1.1 Design Rationale. The design of these modules is guided by
the input-output taxonomy of our framework (Section 3). In other

words, the role of these modules is to register user input and to
facilitate toys’ physical output.

We have the "linear actuator module" and the "rotation module"
to record the "manipulation" input and to create "local movement"
output on the toy,. These two modules have share a unique struc-
ture where the servo is connected to the encoder so that we can
detect the rotation degree of the servo. This design has two benefts.
First, users can use these modules to record their manipulations
which are used to animate virtual content accordingly. On the other
hand, when users want to program output behaviors, this design
makes programming by demonstration (PbD) possible as it requires
recording users’ demonstrated behaviors [66, 71].

In addition, we have the button module, the switch module,
and the knob module that correspond to the "UI element" input.
The "movement module" equipped with omni wheels is designed to
facilitate the "global movement" output. For users to create "sensory
efect" output, we provide the "haptic module" which gives vibration
feedback and the "buzzer & light" module which makes sounds and
fashes lights. The relationship between the input/output taxonomy
and these modules is summarized in Table 1.

Table 1: Relationship between the modules and the in-
put/output taxonomy.

Input Module name
UI element Button module, switch module, knob module

Manipulation Linear actuator module, rotation module
Output Module name

Local movement Linear actuator module, rotation module
Global movement Movement module
Sensory efect Haptic module, buzzer & light module

General Modules Haptic ModuleHaptic Module

Linear Actuator Module
& Rotation Module

(a)

(b) (c)

Pimoroni DRV2605L Linear
Actuator Haptic Breakout

Arduino Nano 33 IoT

3.7V 150mAh
Lipo Battery

Top Middle Bottom

Top Middle Bottom

Linear actuator rack pinion cap

Rotation cap Encoder
318-ENC130175F-12PS

IC for power
management

Beetle ESP32
microcontroller

3.7V 350mAh
Lipo battery x2

Button Switch Knob RGB LED + Buzzer

Beetle ESP32 microcontroller

3.7V 350mAh Lipo battery

Top

Middle

Bottom

Continuous
servo motor
FS90R

Adafruit
NeoPixel

Jewel

Piezo Electric
Tone Buzzer

EK2021PBS-33B WH148

Figure 7: Components and internal structures of the mod-
ules.

4.1.2 Components and Internal Structures. Except for the "move-
ment module" which is purchased online [15], other modules are

MechARspace UIST ’22, October 29-November 2, 2022, Bend, OR, USA

custom designed and fabricated by us. The case of each module is
3D-printed to encapsulate its electronic components. Each module
can be separated into three layers. The top layer is the user interface
layer which has physical structures for users to push, rotate, press,
and etc. The middle layer contains diferent electronics including
the microcontroller, sensors, and actuators. The bottom layer only
holds the battery so that it could be swapped in and out easily.
Detailed information on these electronic hardware is depicted in
Figure 7.

4.1.3 Connection Mechanism. Each module is a standalone unit
with WiFi capability. We connect them to the AR headset (i.e.,
Hololens 2) through a server running the MQTT protocol (Figure
8), which is the standard for IoT communications [72]. This protocol
is based on the publish-subscribe model so that users do not need to
reconfgure the network whenever a new module comes in, which
enables a more spontaneous design process.

Figure 8: Communication between toolkit and Hololens 2.

4.2 Authoring Interface
In this section, we introduce the interface of MechARspace. The
interface is separated into three modes, an Import Mode for users
to import physical and virtual content, an Editor Mode for users
to design and edit toy-AR interactions, and a Play Mode for users
to visualize the authored AR application. To better understand the
MechARspace workfow, we provide the following two examples.

Consider a user who wants to create a self-opening physical chest
with a virtual lock (Figure 9). First, he/she attaches the physical
rotation module to the chest and imports it to the scene along with
the virtual model of the lock (Figure 9 a). The user also needs to
import the model of the physical chest if he/she intends to anchor
the virtual lock to the chest.

After importing the virtual and the physical content, the user
can start editing their behaviors. The user selects the input node
associated with discrete manipulation on the lock and registers it
at the desired locked position (Figure 9 b). Meanwhile, the user
selects the output node on the rotation module and demonstrates
its behavior by manually opening the box (Figure 9 c). The user
can fnish the authoring process by connecting recorded input
with output through visual programming (Figure 9 d). Finally, the
user can enter the Play Mode and play with the chest, which will
automatically open when the lock is set to the predefned position
(Figure 9 e). This interaction can be encoded as "manipulation
(virtual) - discrete - local movement (physical)".

(a) (b) (c) (d)

(e)

Figure 9: Workfow for an authoring task where the user ma-
nipulates a virtual lock and the door will open by itself. (a)
Import the virtual and the physical content. (b) Demonstrate
the input behavior by setting a lock to a given position. (c)
Demonstrate the output behavior by manually opening the
chest. (d) Connect the input with the output. (e) Test and play
with the authored AR application.

(a) (b) (c) (d)

(e)

Figure 10: Workfow for an authoring task where the user
manually opens a chest and a ghost pops up. (a) Import
the virtual and the physical content. (b) Demonstrate the
input behavior by recording the start and end value of the
attached rotation module while the user opening the chest.
(c) Demonstrate the output behavior by moving the ghost
upward while scaling it up. (d) Connect the input with the
output. (e) Test and play with the authored AR application.

In the second example, a user wants to create an AR version
of the traditional toy "Jack-in-the-Box" (Figure 10), where the vir-
tual ghost has to gradually rise and scale up as the user opens the
box. Then, it has to scale down and fall back as the box is closed
by the user. The import process is similar to the frst case. In the
Edit Mode, the user needs to select manipulation as input on the
chest and demonstrates the entire process where the box is opened
from zero to certain degrees (Figure 10 b). These series of input
values continuously map to the virtual ghost’s global movement
output, which is demonstrated by dragging its scale handle and hold-
ing it upwards simultaneously (Figure 10 c). This interaction can
be encoded as "manipulation (physical) - continuous - global
movement (virtual)". In the rest of this section, we will describe
the operations of each step in detail.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

4.2.1 Import Virtual and Physical Content. To import a physical
toy to the scene, the user needs to attach a marker around it and
defne its bounding box (Figure 11 a). To import virtual content,
the user frst needs to select it from our library, which includes a
variety of pre-created virtual models (Figure 11 b). Then, the user
anchors it to a physical object (Figure 11 c). This step is optional as
the virtual content can be independent and does not always follow
the movement of any physical object. Finally, if an IoT module is
mounted on the toy, the user must manually register that infor-
mation to the system by selecting the hardware module from the
toolkit library (Figure 11 d).

Figure 11: Interface in the import mode. (a) Draw a bounding
box around the toy. (b) Select the virtual object from library.
(c) Anchor the virtual content to the toy. (d) Import a module
from the toolkit library.

Figure 12: Diferent types of input (top row) and output (bot-
tom row) supported by MechARspace.

4.2.2 Demonstrate Input Behaviors. As discussed in our framework,
MechARspace enables users to demonstrate four types of input:
spatial manipulation, collision, manipulation, and UI element (Fig-
ure 12 top). Except for collision, the other three types of input can
be both discrete and continuous. The user demonstrates the input
by frst dragging out the corresponding input node and connecting
it to the associated object. For collision input and spatial placement
input–which involves the interaction between two objects–the user

has to draw another connection between them. Except for the colli-
sion input–which does not leave room for customization–the user
has to demonstrate the input behaviors explicitly. In the interface,
the input type is represented visually with a sphere (continuous)
or a square (discrete). If the input is discrete, the user only needs to
move the object to its desired status and click the button to regis-
ter (Figure 13 a). In that case, only that specifc status is recorded.
For continuous input demonstration, the user needs to frst move
the object (e.g., a knob) to the starting status and register it once
(Figure 13 b-1). Then, he/she moves the object to the fnal status
and registers it again (Figure 13 b-2). As a result, a series of values
between the start point and the end point are linearly derived (e.g.,
knob values in the range between two positions).

(a) (b-1) (b-2)

Figure 13: Demonstrate behaviors for (a) discrete input by
registering status once and (b) continuous input by register-
ing the start (b-1) and end (b-2) status.

4.2.3 Demonstrate Output Behaviors. As been discussed in our
framework, MechARspace enables users to demonstrate four types
of output: global movement, local movement sensory efect, and
physics simulation (Figure 12 bottom). Users frst need to create
output nodes for the corresponding objects. In our context, each
output is a sequence of events. Both local and global movement
can be demonstrated by directly moving, rotating, or scaling the
virtual/physical object by hand (Figure 14). Once the movement
demonstration is complete, the user can preview its outcome by
sliding the progress bar.

Progress bar
for preview

Figure 14: Demonstrate object movement by direct manip-
ulation: the user holds the virtual rocket along a trajectory

 and record this process.

We compile the common sensory output to include in our li-
brary. Most of them have one or several parameters available for
customization purposes. For example, a projectile efect can be cus-
tomized in size, speed, amount, and gravity. The user needs to set

MechARspace UIST ’22, October 29-November 2, 2022, Bend, OR, USA

start and end status of this efect by changing its parameters (Figure
15). "1" and "2" on the slider bar represent the parameter value at
the start and the end of the output, respectively. By demonstrating
its parameter value at start and end, the user can create a sequence
of events for output. Some sensory efects such as mesh explosions
happen momentarily and do not allow users to set start and end
status. As a result, they can only be connected to discrete input.
For the physics simulation output, users do not have any room for
customization, and hence the output behavior is determined by the
collision input physics in real-time.

Visual Effect

Start End

Figure 15: Demonstrate sensory efect output by tuning pa-
rameters. "1" and "2" represent the parameter value at the
start and the end of the output, respectively.

4.2.4 Program Toy-AR Interactions. The last step of the authoring
process is to connect the input with the output, which can be done
simply through drawing a line between the input node and the out-
put node. As been discussed in the framework, the trigger-action
type is determined by whether the input is discrete or continuous. If
the user connects the output with a continuous input, the output’s
shape stays as a sphere, signaling a continuous trigger-action (Fig-
ure 16 a). If the user connects an output with a discrete input, the
output turns to a square shape (Figure 16 b), indicating a discrete
trigger-action.

4.2.5 Test the AR Applications. Play Mode supports users to try
out the interactive contents on-the-fy. In this mode, the system
keeps tracking all the triggers authored by the user. This process is
facilitated through reading sensor data from the IoT modules (e.g.,
current angle of the rotation module). Moreover, in Play Mode,
all the trigger and action icons are hidden to give the user an
unobstructed view (Figure 1 c).

4.3 Implementation
We build our system on Hololens 2 [3] using Unity3D (2020.3.0.f1)
[11]. The MechARspace user interface is implemented with support
from the Microsoft Mixed Reality Toolkit (MRTK) [8]. The tracking
of the fducial markers in the physical toys is done through Vufo-
ria Engine [13]. The physics simulation of virtual content in the
real world is enabled using the scene-understanding capability of
Hololens 2 and Unity’s in-built physics engine. The virtual models
and visual efects were downloaded from the Unity asset store [9]
and then imported into the system. The real-time sharing of vir-
tual content among multiple users wearing Hololens is supported

Figure 16: The connection for (a) continuous trigger-action
and (b) discrete trigger-action.

through through Photon Unity Networking (PUN) [5]. The MQTT
broker which handles the data transfer between the IoT toolkit
and Hololens 2, runs on a PC (Intel Core i7-8700K, 3.7GHz CPU,
64GB RAM, NVIDIA RTX2080Ti GPU) connected to the local area
network.

5 APPLICATION SCENARIOS

5.1 Storytelling Toys

(a) (b)

Figure 17: House with a security system. (a) The user utilizes
the character’s location as the input to trigger the rotation of
the door as the output. Interaction encoding: "Spatial place-
ment (virtual) – discrete - local movement (physical)". (b) The
user utilizes the character’s distance to the house as input
to continuously increase the frequency of the buzzer and to
blink the LED in red. Interaction encoding: "Spatial place-
ment (virtual) - continuous – sensory efect (physical)".

Storytelling is often referred as the process of creating or en-
gaging in narrative structures, which can be a powerful tool for
building skills in communication, collaboration, creativity, and re-
tention. Recent works [33, 92] have explored the possibilities of
applying AR-enhanced toys as a way for users to physically con-
struct their stories by manipulating toys. At the same time, users
could enact their stories by controlling virtual characters. Figure 17
describes a straightforward story: "Bob is an engineer who designed
a security system for his house. If a family member arrives at night,
the door automatically opens. One day, a thief tried to break in. The
security system worked as planned and triggered the alarm. Initially,
the thief still wanted to take his chances, but the frequency of the

https://2020.3.0.f1

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

alarm got higher and higher and the warning light blinked as he ap-
proached the door. He eventually had to ran away." The details of the
authoring process and interaction encoding is described in Figure
17. Currently, MechARspace only supports a simplifed version of
storytelling as its lack the functionality of replaying text and voice,
which could be implemented in a future iteration of the system.

(a) (b)

(a-1) (a-2)

(b-1) (b-2)

Linear actuator
module

Figure 18: Parents can turn daily objects into playful items
for their children. (a-1) The user taps the real hamburger
with a fork and (a-2) triggers a virtual halo efect. To author
this interaction, he/she uses the collision between the fork
and hamburger as the input to trigger the visual efect as the
output. Interaction encoding: "Collision (physical) – discrete
- sensory efect (virtual)". (b-1) The user attaches the two ends
of a linear actuator module to the bottom and the lid of a
cookie jar. (b-2) By opening the lid, the user can dynamically
change the size of a virtual ghost. To author this interaction,
he/she uses the linear actuator module’s current length as
the input to trigger the global movement of the ghost. Inter-
action encoding: "Local movement (physical) - continuous –
global movement (virtual)".

5.2 Transforming Daily Objects into Toys
Kudrowitz et al. [55] explains that any tangible item that supports
playfulness can be defned as a toy. With our plug-and-play toolkit,
our system supports users’ spontaneous transformation of daily
objects as a way to entertain everyday life with their imagination.
For instance, a parent can attach a marker to a fork and use it to tap
the hamburger the child is having for lunch. Once the fork collides
with the hamburger, it triggers a virtual halo efect (Figure 18 a),
which makes the dining experience more enjoyable. With the linear
actuator module attached to the lid and bottom of a cookie jar,a

person can linearly control virtual ghost size by moving the lid
(Figure 18 b).

Fire Fire
distinguished

(a) (b) (c)

Figure 19: Physical toy fre truck with adjustable-height wa-
ter gun. (a) The user operates the virtual slider to control the
height of the water gun, which is mounted on top of a linear
actuator module. To author this interaction, he maps a range
of values on the slider to a range of values on the linear ac-
tuator module. Interaction encoding: "UI element (virtual) –
continuous - local movement (physical)". (b) The user presses
the button on the fre truck as the input to spray virtual wa-
ter. Interaction encoding: "UI element (physical) - discrete –
sensory efect (physical)". (c) If the virtual water collides with
the physical building, the buzzer & light module–which in-
dicates a fre on that foor—will turn of. For this interaction,
he/she uses the collision between building and virtual water
to trigger the "turn of" action of the buzzer & light module.
Interaction encoding: "Collision (virtual) - discrete – sensory
efect (physical)".

5.3 Making Miniature Toys More Realistic
In many cases, the toys are simply the miniature replica of their
real-world counterpart (e.g., toy trains, toy boats, toy cars). How-
ever, some real-world efects cannot be easily reproduced on these
toys, thus reducing the realism (e.g., smoke coming out from the
train) while playing. On the other hand, AR can fll this gap by
simulating these events through visual efects. Figure 19 illustrates
a fre truck toy in which the user controls the height of its water
gun by manipulating a virtual slider (Figure 19 a). Meanwhile, the
user can push a button module to spray virtual water (Figure 19
b). Inside the toy building near the truck, each foor is placed with
a buzzer & light module that initially lights up, indicating a fre
(Figure 19 b). If the water is sprayed on that foor, the light will dim
out, which implies the fre has been extinguished (Figure 19 c).

Robot-shaped toys which provide multiple degrees of freedom
for manipulation can also be made more realistic by virtual efect.
For example, when the robot’s left arm (integrated with the rotation
module) reaches out, the user sets it to emit a virtual laser beam (Fig
20 a-1). When the robot arm is raised, the user sets it to initiate a
virtual shield (Fig 20 a-2). Meanwhile, the user controls the physical
arm of the robot (equipped with linear actuator) by moving a virtual
fst in diferent directions (Fig 20 b).

MechARspace UIST ’22, October 29-November 2, 2022, Bend, OR, USA

(a-1) (a-2)

(b-1) (b-2)

Figure 20: Robot that can both be controlled and move on
its own: (a) The user adjusts the robot’s parts to diferent
poses and associates them with diferent visual efects. Inter-
action encoding: "Local movement (physical)– discrete - sen-
sory efect (virtual)". (b) The user sets the robot to perform
the ’punch’ action when the virtual fst moves forward. In-
teraction encoding: "Spatial movement (virtual) - discrete -
local movement (physical)".

Haptic Module

(a-1) (a-2)

(b-1) (b-2)

Figure 21: Multiplayer games (a-1): Two users manipulate
their own virtual characters to play a soccer game. If either
character collides with the physical ball, the ball will move
in the opposite direction. Interaction encoding: "Collision
(physical)– discrete - physics simulation (virtual)". (a-2) If
the physical ball crosses the goal line, a virtual halo efect
will be triggered. Interaction encoding: "Spatial movement
(physical) - discrete -sensory efect (virtual)." (b-1) As the user
toggles the switch, the physical cannon shoots two kinds of
virtual efects. Interaction encoding: "UI element (physical) -
discrete - sensory efect (virtual)". (b-2) If specifc visual efect
collides with the chest, the haptic module attached will start
vibrating. Interaction encoding: "Collision (virtual) - discrete
-sensory efect (physical)".

5.4 Multiplayer Toy Games
A study has shown that multiplayer games could be more fun and
engaging than single-player ones [47]. Besides the pure entertain-
ment value, multiplayer games (e.g., board games) ofer players
opportunities to connect and socialize with others. Meanwhile, the
immersive AR experience can be shared with multiple people simul-
taneously. We propose two multiplayer games with AR-enhanced
toys that can be authored with MechARspace.

In the frst game, each user controls a virtual soccer player to
move around the feld. If a virtual player hits a physical soccer ball
equipped with movement module, the ball will move in the other
direction (Figure 21 a-1). Once the soccer ball passes the goal line,
it will trigger a virtual halo efect (Figure 21 a-2).

In the second game, one user has a physical 3D printed canon
with a switch module, while another has a physical basket and a
haptic module (Figure 21 b-1). The frst user can toggle the switch
module to fre either virtual stars or virtual bombs. If a virtual
bomb hits the basket, it triggers the activation of the haptic module
(Figure 21 b-2) on the basket held by the second user.

6 USER STUDY EVALUATION
We conducted a two-session user study to evaluate MechARspace’s
overall system usability and its efcacy as a design tool. Six users
were recruited (fve males and one female, aged 19-26). They have
all experienced AR applications on either cell phones, tablets, or
head-mounted devices. Four of our users have participated in toy
making activities in some forms. One of them had taken the CAD-
related classes before. Another one of them once have once followed
an online tutorial to fabricate a customized chessboard for himself.
None of them is a professional AR/VR designer or programmer, con-
sidering that MechARspace is designed as an end-user authoring
tool. None of the users had experienced our system before conduct-
ing the user study. The entire study took around 3 hours, and each
user was paid 20 dollars. The study took place at our lab equipped
with common digital fabrication tools such as a 3D printer and a
laser cutter. We frst asked the users to walk through the Hololens
2 ofcial tutorial to learn how to navigate the user interface with
basic hand gestures. After the frst session, the user completed a
survey with Likert-type (scaled 1-5) questions regarding the user ex-
perience of specifc system features and a standard System Usability
Scale (SUS) questionnaire. After the second session, we conducted
an open-ended interview to get subjective feedback on our system.

6.1 Session One: System Usability Evaluation
We designed six micro tasks for the frst user study session (Figure
22). Each task contains one pair of toy-AR interaction for users
to author. Half of these interactions (Task 1-3) use the toy as the
trigger to actuate the AR content, and the other three (Task 4-6) use
the AR content to actuate the toy. Our input and output categories
are all covered in these interactions. Both continuous and discrete
trigger-action types are included as well. The description of each
task is detailed in Table 2. The goal of this session was to evaluate
the usability of the MechARspace system and to explore the user
experience of authoring toy-based AR applications inside a mixed
reality environment.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

Table 2: Detailed descriptions on the tasks in the frst session.

Task Description Module Interaction Encoding
T1 A user wields a physical hammer to smash a virtual golden egg None Collision - discrete - sensory
T2 A user presses a physical button on the control panel to launch a virtual rocket Button module UI element - discrete - global movement
T3 A user turns a physical knob to adjust the intensity of the virtual fame on the stove Knob module UI element - continuous - sensory
T4 As a virtual thieve reaches the house, the frequency of physical buzzer increases Buzzer & light module Spatial placement - continuous - sensory
T5 A user throws a virtual rock at the physical car to send it backwards Movement module Collision - discrete - physics simulation
T6 A user changes the combination of a virtual lock to open the door Linear actuator module Manipulation - discrete -local movement

Figure 22: Tasks in the frst session.

0.00 0.17 0.33 0.50 0.66 0.83 1.00

The whole workflow is smooth and easy to follow. (Q8)

The user interface is clear and easy to use. (Q7)

I can easily import virtual content and anchor it to
physical items. (Q6)

I can easily draw bounding boxes around toys.(Q5)

The trigger-action metaphor is an intuitive approach to
program physical-virtual interactions. (Q4)

It is helpful to view animations of AR and movements of
physical toys simultaneously while authoring. (Q3)

It is intuitive to define AR animations and toy behaviors
through direct manipulation. (Q2)

The toolkit can help me easily transform ordinary toys to
be AR compatible. (Q1)

Strongly disagree Slightly disagree Neutral Slightly agree Strongly agree

0 1 2 3 4 5

Figure 23: Likert-type questionnaire results of the frst ses-
sion.

6.1.1 Result and Discussion. The Likert-type question ratings are
shown in Figure 23. In general, users found the workfow easy to
follow (Q8: avg=4.5, sd=0.83), and the interface clear (Q7: avg=3.83,
sd=0.75). "Once I walked through the tasks on the frst round, I was
confdent I could perform some customization all by myself (P3)". The
prerequisite procedures for loading virtual (Q6: avg=4.33, sd=1.21)
and physical (Q5: avg=4.5, sd=0.83) objects into the scene were
also considered straightforward. Most of them acknowledged that
the trigger-action metaphor was suitable for toy-based AR appli-
cation creation (Q4: avg=4.5, sd=0.54)."The action-reaction type of
programming logic was super easy to follow, and I feel it will cover
most scenarios (P1)". Meanwhile, users appreciated the immersive
authoring environment, which allows them to concurrently view

the toy and its associated AR animations (Q3: avg=5, sd=0). "I like
the fact that I can view the toy and AR at the same time, giving me a
look at the whole picture (P6)". Also, they found that programming by
demonstration could greatly streamline the programming process
(Q2: avg=4.83, sd=0.41). "There is nothing more intuitive to defne the
behaviors [of virtual and physical objects] than directly manipulating
them (P5)". All users were in favor of the plug-and-play IoT toolkit
we provided to enrich the AR experience (Q1: avg=4.83, sd=1.03). "I
felt like I could simply attach it to many ordinary things and animate
them in AR (P6)". During the user study, we observed that most
users (fve out of six) struggled when they initially started learning
how to use hand gestures to navigate the AR interface in Hololens.
Two of them attributed this difculty to the lack of haptic feedback
when interacting with Hololens’s virtual menus. Similar observa-
tions have been made in prior works which also adopt Hololens as
the testing platform [81, 93]. However, learning to use the system
itself went smoothly once they passed that threshold. the standard
SUS survey result for the entire study received 83 out of 100 with a
standard deviation of 10.58, which indicated high usability of the
whole system.

6.2 Session Two: Design and Implement
AR-enhanced Toys

We sought to examine MechARspace in a freestyle DIY session. In
this session, we began by asking participants to capture, design, and
implement their ideas for an AR-enhanced toy. This brainstorming
and quick-prototyping of the toy took about 80 minutes. At this
stage, participants were already familiar with the system, but we
walked them through all the available potential toy-AR joint inter-
actions by explaining to them the interaction model we described
in section 3. A researcher was present to clarify any questions the

https://avg=4.83
https://avg=4.83
https://avg=4.33
https://avg=3.83

MechARspace UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 24: AR-enhanced toy design outcomes from the second session of user study.

Table 3: Detailed descriptions on the AR-enhanced toys made by users in the second session.

Participants Description Module Interaction Encoding
P1 A user presses the physical button on the magic wand to cast a spell. Button module UI element - discrete - sensory efect
P2 A user throws a virtual ball to strike down the physical bowling pin. Rotation module Collision - discrete - local movement

P3
As a user grabs a toy frog closer to the virtual demon,

the danger sign will become larger. None Spatial placement - continuous - global movement

P4
A user adapts a traditional water gun to let it spray virtual water.
He/she can then spray water on a physical car to push it back.

Button module
Movement module

UI element - discrete - sensory efect
Collision - discrete - physics simulation

P5
If a virtual character controlled by a user jumps on a platform,

he will be elevated to reach the golden egg. Rotation module Spatial placement - discrete - local movement

P6
A user holds the hilt of a saber,

turns the knob to change the intensity of virtual saber efect. Knob module UI element - continuous - sensory efect

participant may have. Participants were given the freedom paper-
prototype their designs, implement them using fabrication tools
(e.g., laser cutter) inside our laboratory, and then enhance the toys
by using MechARspace to customize the toy-AR interactions. If
their intended virtual models or visual efects were not in our li-
brary, we would download and import them to the library. With
the fabricated toys and these virtual content, users could fnally
validate their designed joint interaction with MechARspace. In the
end, we held an in-depth discussion with our users regarding their
perception of empowering a DIY-ed toy with AR technology in
general.

6.2.1 Result and Discussion. Figure 24 and Table 3 showcase the
toys created by the users during this open creation session. Each
user’s toy consists of at least one pair of physical-virtual interaction.

The purpose of our study is to validate a unifed framework
that can be useful to novice designers and DIY-ers. Overall, partic-
ipants found the interaction model to be comprehensive enough
that they were quickly able to capture their ideas and prototype
them. “Initially, I thought designing the virtual aspect of my toy–and
the mechanical part too–would be much more difcult and need more
tries, but these UIs really give me a good starting point(P4)".

Another common theme across participants was the understand-
ing of the motivation and the signifcance behind the system. “I
can defnitely see the future of toys, where they are unlimited by
physical constraints. . . This will bring about a new relationship with
the environment and the virtual parts of it (P6)".

One of the participants was enthusiastic about the prospect of
using the system for storytelling as she works with children. “The
AR increases the dimensions and possibilities of the toy. I can think
of a scenario where I give each kid an action fgure of their choice.
Then, with the AR and the modules, I get them swords, hammers,
shields.Then, they go to fght giant spiders and monsters. Now, this is
a full-blown adventure (P3)".

An important concern that was addressed with regard to the
participants’ non-technical backgrounds is that programming AR
applications no longer seems unattainable. "I used to think program-
ming AR would be complicated. But this input-output model you
proposed really simplifes a lot of things make the whole process less
daunting. I feel like I can just create a program that just connects
lines (P1)". Participants gave emphasis on the usefulness of using
AR content enabled by fast customization: “I can download virtual
content, instantly try it out without further delay. If I am not satisfed
with it I can simply delete it and try another. (P2)". Conversely, the
virtual content hovering on or close to the physical toy made it
simpler and more intuitive for participants to use as guiding points
and thus, allowing them to “have the benefts of both worlds (P5)".

7 LIMITATIONS AND FUTURE WORKS

7.1 The Ceiling of the Interaction Model
The proposed input-output interaction model does have its ceilings.
First of all, this model assumes the input condition and output event

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

are both predictable so that users can explicitly demonstrate them
respectively and link them together. However, there may exist some
random events during toy-AR interactions. In the second session of
our user study, one user initially wanted to design an AR version of
the "whack a mole [14]" toy where he could hold a physical hammer
to smash virtual moles that pop up randomly from the ground. In
that case, the random behaviors of the mole cannot be explicitly
authored by the user. Mainstream game engines have resorted to
machine learning technology (e.g., Unity machine learning agent
[10]) to create objects with random behaviors (e.g., NPCs) without
predefnitions. An alternative approach is to introduce the random
timer as a input that can trigger events. In the future, we will explore
the possibility of employing similar technologies in our system.

In addition, MechARspace only supports simple and direct map-
pings between triggers and actions. Some complex mappings such
as condition (an action only reacts to a trigger given some pre-
conditions, such as location, time, or other triggers) or parallel
(an action only reacts when multiple triggers are activated concur-
rently). While most toys are straightforward to play with, some
others (e.g., puzzle cards) do have intricate game logic. One possi-
ble solution would be to introduce a more comprehensive visual
programming logic similar to the ones in CAPturAR [82], Ivy [31],
and FlowMatic [91]. For example, the "loop" construct introduced
in Ivy [31] could be applied to program a virtual character who
performs some routine tasks.

7.2 Creation and Integration of Virtual &
Physical Content into the Scene

Currently, the virtual models and visual efects of MechARspace are
preloaded into the library. Future iterations of MechARspace should
support real-time import of virtual content from popular online
platforms (e.g., Unity asset store [9]) to support more spontaneous
creations. For a physical content, we asked users to integrate it into
the scene by attaching a marker and specifying its bounding box.
Such a process could be streamlined by scanning the geometry of
physical objects in real-time. However, the scanning precision of
Hololens 2 is too low for this task. In the future, we will explore
the possibility of using external devices (e.g., depth camera [4]) to
scan the model and sending it directly into the Hololens 2.

7.3 Crowding of Virtual Content
Right now, the UI elements are displayed in-situ besides the virtual
content. While most of the users appreciated this feature since "the
spatial relationship between them brings more logical sense to the
creation process (P2)". Some of them also expressed concerns that
too many overlapping virtual content would inevitably crowd the
interface if several interactions need to be authored concurrently.
One possible solution to this issue would be to display the UI ele-
ments adaptively. For instance, we can decrease the opacity of the
trigger-action link that is not currently been authored by the user.

7.4 Tracking Toys
We used fducial markers attached to the toys to track their real-
time positions. This approach is susceptible to occlusion, and the
computation capability of Hololens 2 constrains the tracking speed
and frequency. During the user study, some of our users expressed

frustration when the objects lost track. "Whenever I move the ham-
mer too quick, it will lose track and interrupt my play. It is really
annoying (P2)". In the future, we will explore the possibility of de-
signing a dedicated IoT toolkit (e.g., RFID tag [80]) for tracking or
employing markerless vision-based tracking technology [29].

7.5 IoT Toolkit
As for now, every module is a standalone device with a battery, a
microprocessor, sensors, and actuators integrated, which inevitably
makes them bulky, especially when they are attached to small-sized
toys. In the future, we will develop a CAD plugin for our toolkit,
which would allow users to pre-allocate space for these modules.
In this way, the toolkit can be integrated inside instead of outside
the toy.

8 CONCLUSION
In this work, we present MechARspace, an authoring tool that en-
ables novice designers and DIY-ers to create AR applications based
on their physical toys. MechARspace allows users to program cus-
tomized toy-AR interactions in-situ by demonstration while using
relevant contextual elements as references. We start by compiling
the bidirectional interaction model that maps various types of toys’
actions to responsive behaviors of virtual contents. Following this
interaction model, we design our immersive visual programming
interface so that users can author corresponding interaction modal-
ities through simple trigger-action programming. Furthermore, we
develop a collection of IoT modules to help designers efortlessly
integrate their toys into the AR scene without lengthy electronic
prototyping processes. To explore the capability of MechARspace,
we demonstrate four groups of applications scenarios. Through a
two-session user study, we frst proved our system’s usability and
then its utility as a design tool to help impromptu AR-enhanced
toy design. Thus, MechARspace provides the HCI community with
a unifed framework and an open landscape into future designs of
AR authoring tools for toys.

ACKNOWLEDGMENTS
We wish to give a special thanks to the reviewers for their invalu-
able feedback. This work is partially supported by the NSF under
the Future of Work at the Human Technology Frontier (FW-HTF)
1839971. We also acknowledge the Feddersen Distinguished Profes-
sorship Funds. Any opinions, fndings, and conclusions expressed
in this material are those of the authors and do not necessarily
refect the views of the funding agency. We would also like to thank
Enze Jiang for his help in writing the alt-text.

REFERENCES
[1] 2022. ARCore Build the Future. https://developers.google.com/ar.
[2] 2022. Dive into the world of augmented reality. https://developer.apple.com/

augmented-reality/.
[3] 2022. Hololens2. https://www.microsoft.com/en-us/hololens.
[4] 2022. Intel Depth Camera. https://www.intelrealsense.com/depth-camera-d435/.
[5] 2022. Introduction to the Multi-user capabilities tutorials. https://docs.

microsoft.com/en-us/windows/mixed-reality/develop/unity/tutorials/mr-
learning-sharing-01.

[6] 2022. LEGO AR studio. https://www.lego.com/en-us/aboutus/news/2019/
october/lego-ar-studio/.

[7] 2022. Mario Kart Live. https://vrscout.com/news/mario-kart-live-ar-now-
available/.

https://developers.google.com/ar
https://developer.apple.com/augmented-reality/
https://developer.apple.com/augmented-reality/
https://www.microsoft.com/en-us/hololens
https://www.intelrealsense.com/depth-camera-d435/
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/tutorials/mr-learning-sharing-01
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/tutorials/mr-learning-sharing-01
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/tutorials/mr-learning-sharing-01
https://www.lego.com/en-us/aboutus/news/2019/october/lego-ar-studio/
https://www.lego.com/en-us/aboutus/news/2019/october/lego-ar-studio/
https://vrscout.com/news/mario-kart-live-ar-now-available/
https://vrscout.com/news/mario-kart-live-ar-now-available/

MechARspace UIST ’22, October 29-November 2, 2022, Bend, OR, USA

[8] 2022. MRTK. https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-
unity/?view=mrtkunity-2021-05.

[9] 2022. Unity Asset Store. https://assetstore.unity.com/.
[10] 2022. Unity Machine Learning Agents. https://unity.com/products/machine-

learning-agents/.
[11] 2022. Unity Real-Time Development Platform. https://unity.com/.
[12] 2022. Unreal Engine: The most powerful real-time 3D creation tool. https:

//www.unrealengine.com/en-US.
[13] 2022. Vuforia Engine. https://developer.vuforia.com/.
[14] 2022. Whac-A-Mole. https://en.wikipedia.org/wiki/Whac-A-Mole.
[15] 2022. yahboom. https://category.yahboom.net/.
[16] Raphael Anderegg, Loïc Ciccone, and Robert W Sumner. 2018. PuppetPhone:

puppeteering virtual characters using a smartphone. In Proceedings of the 11th
Annual International Conference on Motion, Interaction, and Games. 1–6.

[17] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-action-
circuits: Leveraging generative design to enable novices to design and build
circuitry. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. 331–342.

[18] Takafumi Aoki, Takashi Matsushita, Yuichiro Iio, Hironori Mitake, Takashi
Toyama, Shoichi Hasegawa, Rikiya Ayukawa, Hiroshi Ichikawa, Makoto Sato,
Takatsugu Kuriyama, et al. 2005. Kobito: virtual brownies. In ACM SIGGRAPH
2005 emerging technologies. 11–es.

[19] Rahul Arora, Rubaiat Habib Kazi, Danny M Kaufman, Wilmot Li, and Karan Singh.
2019. Magicalhands: Mid-air hand gestures for animating in vr. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology.
463–477.

[20] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. 2008. Survey:
Robot programming by demonstration. Technical Report. Springrer.

[21] Mark Billinghurst, Raphael Grasset, and Julian Looser. 2005. Designing aug-
mented reality interfaces. ACM Siggraph Computer Graphics 39, 1 (2005), 17–22.

[22] Frederik Brudy, Christian Holz, Roman Rädle, Chi-Jui Wu, Steven Houben,
Clemens Nylandsted Klokmose, and Nicolai Marquardt. 2019. Cross-device
taxonomy: Survey, opportunities and challenges of interactions spanning across
multiple devices. In Proceedings of the 2019 chi conference on human factors in
computing systems. 1–28.

[23] Daniel Calife, João Luiz Bernardes Jr, and Romero Tori. 2009. Robot Arena: An
augmented reality platform for game development. Computers in Entertainment
(CIE) 7, 1 (2009), 1–26.

[24] Sylvain Calinon. 2009. Robot programming by demonstration. EPFL Press.
[25] Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S Rao, Manav Wadhawan, Ke Huo,

and Karthik Ramani. 2019. GhostAR: A time-space editor for embodied authoring
of human-robot collaborative task with augmented reality. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology. 521–534.

[26] Yuanzhi Cao, Zhuangying Xu, Terrell Glenn, Ke Huo, and Karthik Ramani. 2018.
Ani-Bot: A Modular Robotics System Supporting Creation, Tweaking, and Us-
age with Mixed-Reality Interactions. In Proceedings of the Twelfth International
Conference on Tangible, Embedded, and Embodied Interaction. 419–428.

[27] Jon Carroll and Fabrizio Polo. 2013. Augmented reality gaming with sphero. In
ACM Siggraph 2013 Mobile. 1–1.

[28] Ya-Wen Cheng, Yuping Wang, Yu-Fen Yang, Zih-Kwan Yang, and Nian-Shing
Chen. 2020. Designing an authoring system of robots and IoT-based toys for
EFL teaching and learning. Computer Assisted Language Learning 34, 1-2 (2020),
6–34.

[29] Andrew I Comport, Eric Marchand, Muriel Pressigout, and Francois Chaumette.
2006. Real-time markerless tracking for augmented reality: the virtual visual
servoing framework. IEEE Transactions on visualization and computer graphics
12, 4 (2006), 615–628.

[30] Nathan Delson and Harry West. 1996. Robot programming by human demon-
stration: Adaptation and inconsistency in constrained motion. In Proceedings of
IEEE International conference on Robotics and Automation, Vol. 1. IEEE, 30–36.

[31] Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani, and
George Fitzmaurice. 2017. Ivy: Exploring spatially situated visual programming
for authoring and understanding intelligent environments. In Proceedings of the
43rd Graphics Interface Conference. 156–162.

[32] Markus Funk, Oliver Korn, and Albrecht Schmidt. 2014. An augmented workplace
for enabling user-defned tangibles. In CHI’14 Extended Abstracts on Human
Factors in Computing Systems. 1285–1290.

[33] Terrell Glenn, Ananya Ipsita, Caleb Carithers, Kylie Peppler, and Karthik Ramani.
2020. StoryMakAR: Bringing stories to life with an augmented reality & physical
prototyping toolkit for youth. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–14.

[34] Saul Greenberg and Chester Fitchett. 2001. Phidgets: easy development of physi-
cal interfaces through physical widgets. In Proceedings of the 14th annual ACM
symposium on User interface software and technology. 209–218.

[35] Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer, Oskar
Bechtold, Steve Hodges, Matthew S Reynolds, and Joshua R Smith. 2017. Finding
common ground: A survey of capacitive sensing in human-computer interaction.
In Proceedings of the 2017 CHI conference on human factors in computing systems.

3293–3315.
[36] Sebastian Günther, Florian Müller, Martin Schmitz, Jan Riemann, Niloofar Dezfuli,

Markus Funk, Dominik Schön, and Max Mühlhäuser. 2018. CheckMate: Explor-
ing a tangible augmented reality interface for remote interaction. In Extended
Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems.
1–6.

[37] Sunao Hashimoto, Akihiko Ishida, Masahiko Inami, and Takeo Igarashi. 2011.
Touchme: An augmented reality based remote robot manipulation. In The 21st
International Conference on Artifcial Reality and Telexistence, Proceedings of
ICAT2011, Vol. 2.

[38] Anuruddha Hettiarachchi and Daniel Wigdor. 2016. Annexing reality: Enabling
opportunistic use of everyday objects as tangible proxies in augmented reality. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
1957–1967.

[39] Juan David Hincapié-Ramos, Kasim Ozacar, Pourang P Irani, and Yoshifumi
Kitamura. 2015. GyroWand: IMU-based raycasting for augmented reality head-
mounted displays. In Proceedings of the 3rd ACM Symposium on Spatial User
Interaction. 89–98.

[40] Steve Hinske, Matthias Lampe, Nicola Yuill, Sara Price, and Marc Langheinrich.
2009. Kingdom of the knights: Evaluation of a seamlessly augmented toy envi-
ronment for playful learning. In Proceedings of the 8th International Conference
on Interaction Design and Children. 202–205.

[41] Steve Hinske, Marc Langheinrich, and Matthias Lampe. 2008. Towards guide-
lines for designing augmented toy environments. In Proceedings of the 7th ACM
conference on Designing interactive systems. 78–87.

[42] Takefumi Hiraki, Shogo Fukushima, and Takeshi Naemura. 2016. Phygital feld: an
integrated feld with a swarm of physical robots and digital images. In SIGGRAPH
ASIA 2016 Emerging Technologies. 1–2.

[43] Donell Holloway and Lelia Green. 2016. The Internet of toys. Communication
Research and Practice 2, 4 (2016), 506–519.

[44] Steven Houben, Connie Golsteijn, Sarah Gallacher, Rose Johnson, Saskia Bakker,
Nicolai Marquardt, Licia Capra, and Yvonne Rogers. 2016. Physikit: Data engage-
ment through physical ambient visualizations in the home. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. 1608–1619.

[45] Gaoping Huang, Xun Qian, Tianyi Wang, Fagun Patel, Maitreya Sreeram, Yuanzhi
Cao, Karthik Ramani, and Alexander J Quinn. 2021. Adaptutar: An adaptive
tutoring system for machine tasks in augmented reality. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[46] Ke Huo and Karthik Ramani. 2017. Window-shaping: 3d design ideation by
creating on, borrowing from, and looking at the physical world. In Proceedings
of the Eleventh International Conference on Tangible, Embedded, and Embodied
Interaction. 37–45.

[47] Ioanna Iacovides, Anna L Cox, Ara Avakian, and Thomas Knoll. 2014. Player
strategies: Achieving breakthroughs and progressing in single-player and co-
operative games. In Proceedings of the frst ACM SIGCHI annual symposium on
Computer-human interaction in play. 131–140.

[48] Hiroshi Ishii. 2008. The tangible user interface and its evolution. Commun. ACM
51, 6 (2008), 32–36.

[49] Hiroshi Ishii and Brygg Ullmer. 1997. Tangible bits: towards seamless interfaces
between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on
Human factors in computing systems. 234–241.

[50] Kevin Sebastian Kain, Susanne Stadler, Manuel Giuliani, Nicole Mirnig, Gerald
Stollnberger, and Manfred Tscheligi. 2017. Tablet-based augmented reality in
the factory: Infuence of knowledge in computer programming on robot teach-
ing tasks. In Proceedings of the Companion of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction. 151–152.

[51] Shunichi Kasahara, Ryuma Niiyama, Valentin Heun, and Hiroshi Ishii. 2013.
exTouch: spatially-aware embodied manipulation of actuated objects mediated by
augmented reality. In Proceedings of the 7th International Conference on Tangible,
Embedded and Embodied Interaction. 223–228.

[52] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice.
2014. Kitty: sketching dynamic and interactive illustrations. In Proceedings of the
27th annual ACM symposium on User interface software and technology. 395–405.

[53] Annie Kelly, R Benjamin Shapiro, Jonathan de Halleux, and Thomas Ball. 2018.
ARcadia: A rapid prototyping platform for real-time tangible interfaces. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–8.

[54] Joo Chan Kim, Teemu H Laine, and Christer Åhlund. 2021. Multimodal interaction
systems based on internet of things and augmented reality: A systematic literature
review. Applied Sciences 11, 4 (2021), 1738.

[55] Barry M Kudrowitz and David R Wallace. 2010. The play pyramid: A play
classifcation and ideation tool for toy design. International Journal of Arts and
Technology 3, 1 (2010), 36–56.

[56] David Kurlander, Allen Cypher, and Daniel Conrad Halbert. 1993. Watch what I
do: programming by demonstration. MIT press.

[57] Fabrizio Lamberti, Davide Calandra, Federica Bazzano, Filippo G Prattico, and
Davide M Destefanis. 2018. RobotQuest: A robotic game based on projected
mixed reality and proximity interaction. In 2018 IEEE Games, Entertainment,

https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/?view=mrtkunity-2021-05
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/?view=mrtkunity-2021-05
https://assetstore.unity.com/
https://unity.com/products/machine-learning-agents/
https://unity.com/products/machine-learning-agents/
https://unity.com/
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://developer.vuforia.com/
https://en.wikipedia.org/wiki/Whac-A-Mole
https://category.yahboom.net/

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Raja, Ana Villanueva, and Karthik Ramani

Media Conference (GEM). IEEE, 1–9.
[58] Gun A Lee, Gerard J Kim, and Mark Billinghurst. 2005. Immersive authoring:

What you experience is what you get (wyxiwyg). Commun. ACM 48, 7 (2005),
76–81.

[59] Gun A Lee, Claudia Nelles, Mark Billinghurst, and Gerard Jounghyun Kim. 2004.
Immersive authoring of tangible augmented reality applications. In Third IEEE
and ACM International Symposium on Mixed and Augmented Reality. IEEE, 172–
181.

[60] Jakob Leitner, Michael Haller, Kyungdahm Yun, Woontack Woo, Maki Sugimoto,
Masahiko Inami, Adrian David Cheok, and HD Been-Lirn. 2010. Physical inter-
faces for tabletop games. Computers in Entertainment (CIE) 7, 4 (2010), 1–21.

[61] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping In-
teractive AR Experiences through Programming by Demonstration. In The 34th
Annual ACM Symposium on User Interface Software and Technology. 626–637.

[62] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020. Pronto:
Rapid augmented reality video prototyping using sketches and enaction. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[63] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-user
development: An emerging paradigm. In End user development. Springer, 1–8.

[64] Richard G McDaniel and Brad A Myers. 1999. Getting more out of programming-
by-demonstration. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 442–449.

[65] Leon Müller, Ken Pfeufer, Jan Gugenheimer, Bastian Pfeging, Sarah Prange, and
Florian Alt. 2021. Spatialproto: Exploring real-world motion captures for rapid
prototyping of interactive mixed reality. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–13.

[66] Ryosuke Nakayama, Ryo Suzuki, Satoshi Nakamaru, Ryuma Niiyama, Yoshihiro
Kawahara, and Yasuaki Kakehi. 2019. Morphio: Entirely soft sensing and actua-
tion modules for programming shape changes through tangible interaction. In
Proceedings of the 2019 on Designing Interactive Systems Conference. 975–986.

[67] Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu, Michelle Chung,
Piaoyang Wang, and Janet Nebeling. 2020. XRDirector: A role-based collaborative
immersive authoring system. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12.

[68] Michael Nebeling and Maximilian Speicher. 2018. The trouble with augmented
reality/virtual reality authoring tools. In 2018 IEEE international symposium on
mixed and augmented reality adjunct (ISMAR-Adjunct). IEEE, 333–337.

[69] Gary Ng, Joon Gi Shin, Alexander Plopski, Christian Sandor, and Daniel Saakes.
2018. Situated game level editing in augmented reality. In Proceedings of the
Twelfth International Conference on Tangible, Embedded, and Embodied Interaction.
409–418.

[70] Xun Qian, Fengming He, Xiyun Hu, Tianyi Wang, Ananya Ipsita, and Karthik
Ramani. 2022. ScalAR: Authoring Semantically Adaptive Augmented Reality
Experiences in Virtual Reality. In CHI Conference on Human Factors in Computing
Systems. 1–18.

[71] Hayes Solos Rafe, Amanda J Parkes, and Hiroshi Ishii. 2004. Topobo: a con-
structive assembly system with kinetic memory. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 647–654.

[72] Dipa Soni and Ashwin Makwana. 2017. A survey on mqtt: a protocol of internet
of things (iot). In International conference on telecommunication, power analysis
and computing techniques (ICTPACT-2017), Vol. 20. 173–177.

[73] Andrew Spielberg, Alanson Sample, Scott E Hudson, Jennifer Mankof, and James
McCann. 2016. RapID: A framework for fabricating low-latency interactive
objects with RFID tags. In Proceedings of the 2016 chi conference on human factors
in computing systems. 5897–5908.

[74] Ryo Suzuki, Adnan Karim, Tian Xia, Hooman Hedayati, and Nicolai Marquardt.
2022. Augmented Reality and Robotics: A Survey and Taxonomy for AR-enhanced
Human-Robot Interaction and Robotic Interfaces. In CHI Conference on Human
Factors in Computing Systems. 1–33.

[75] Ryo Suzuki, Jun Kato, Mark D Gross, and Tom Yeh. 2018. Reactile: Programming
swarm user interfaces through direct physical manipulation. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems. 1–13.

[76] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2020. Realitysketch: Embedding responsive graphics and
visualizations in AR through dynamic sketching. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 166–181.

[77] Jef KT Tang and Jordan Tewell. 2015. Emerging human-toy interaction tech-
niques with augmented and mixed reality. In Mobile Services for Toy Computing.
Springer, 77–105.

[78] Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Kylie Peppler, Thomas Redick, and
Karthik Ramani. 2020. Meta-AR-app: an authoring platform for collaborative
augmented reality in STEM classrooms. In Proceedings of the 2020 CHI conference
on human factors in computing systems. 1–14.

[79] Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Feiyang Wang, Subramanian Chi-
dambaram, and Karthik Ramani. 2022. ColabAR: A Toolkit for Remote Col-
laboration in Tangible Augmented Reality Laboratories. Proceedings of the ACM
on Human-Computer Interaction 6, CSCW1 (2022), 1–22.

[80] Nicolas Villar, Daniel Cletheroe, Greg Saul, Christian Holz, Tim Regan, Oscar
Salandin, Misha Sra, Hui-Shyong Yeo, William Field, and Haiyan Zhang. 2018.
Project zanzibar: A portable and fexible tangible interaction platform. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–13.

[81] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik
Ramani. 2021. GesturAR: An Authoring System for Creating Freehand Interactive
Augmented Reality Applications. In The 34th Annual ACM Symposium on User
Interface Software and Technology. 552–567.

[82] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Ke Huo, Yuanzhi Cao, and
Karthik Ramani. 2020. CAPturAR: An augmented reality tool for authoring
human-involved context-aware applications. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 328–341.

[83] Matt Whitlock, Jake Mitchell, Nick Pfeufer, Brad Arnot, Ryan Craig, Bryce Wilson,
Brian Chung, and Danielle Albers Szafr. 2020. MRCAT: In situ prototyping of
interactive AR environments. In International Conference on Human-Computer
Interaction. Springer, 235–255.

[84] Karl DD Willis, Ivan Poupyrev, and Takaaki Shiratori. 2011. Motionbeam: a
metaphor for character interaction with handheld projectors. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 1031–1040.

[85] Ryan Wistort and Cynthia Breazeal. 2011. TofuDraw: A mixed-reality choreogra-
phy tool for authoring robot character performance. In Proceedings of the 10th
International Conference on Interaction Design and Children. 213–216.

[86] Hui Ye and Hongbo Fu. 2022. ProGesAR: Mobile AR Prototyping for Proxemic and
Gestural Interactions with Real-world IoT Enhanced Spaces. In CHI Conference
on Human Factors in Computing Systems. 1–14.

[87] Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu. 2020. ARAnimator:
in-situ character animation in mobile AR with user-defned motion gestures.
ACM Transactions on Graphics (TOG) 39, 4 (2020), 83–1.

[88] Neng-Hao Yu, Li-Wei Chan, Seng Yong Lau, Sung-Sheng Tsai, I-Chun Hsiao,
Dian-Je Tsai, Fang-I Hsiao, Lung-Pan Cheng, Mike Chen, Polly Huang, et al.
2011. TUIC: enabling tangible interaction on capacitive multi-touch displays. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
2995–3004.

[89] Ya-Ting Yue, Yong-Liang Yang, Gang Ren, and Wenping Wang. 2017. Scenectrl:
Mixed reality enhancement via efcient scene editing. In Proceedings of the 30th
annual ACM symposium on user interface software and technology. 427–436.

[90] Jürgen Zauner, Michael Haller, Alexander Brandl, and Werner Hartman. 2003.
Authoring of a mixed reality assembly instructor for hierarchical structures. In
The Second IEEE and ACM International Symposium on Mixed and Augmented
Reality, 2003. Proceedings. IEEE, 237–246.

[91] Lei Zhang and Steve Oney. 2020. Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 342–353.

[92] Zhiying Zhou, Adrian David Cheok, JiunHorng Pan, and Yu Li. 2004. Magic Story
Cube: an interactive tangible interface for storytelling. In Proceedings of the 2004
ACM SIGCHI International Conference on Advances in computer entertainment
technology. 364–365.

[93] Fengyuan Zhu and Tovi Grossman. 2020. Bishare: Exploring bidirectional interac-
tions between smartphones and head-mounted augmented reality. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. 1–14.

	Abstract
	1 Introduction
	2 Related work
	2.1 Bidirectional Interactions in AR-enhanced Toys
	2.2 Immersive AR Authoring Tools
	2.3 Programming by Demonstration
	2.4 Modular IoT Toolkit

	3 Interaction framework for AR and toys
	3.1 Input and Output Model
	3.2 Creating Bidirectional Toy-AR Interactions through Trigger-action Connection.

	4 System and Design
	4.1 Modular IoT Toolkit
	4.2 Authoring Interface
	4.3 Implementation

	5 APPLICATION SCENARIOS
	5.1 Storytelling Toys
	5.2 Transforming Daily Objects into Toys
	5.3 Making Miniature Toys More Realistic
	5.4 Multiplayer Toy Games

	6 User Study Evaluation
	6.1 Session One: System Usability Evaluation
	6.2 Session Two: Design and Implement AR-enhanced Toys

	7 Limitations and Future Works
	7.1 The Ceiling of the Interaction Model
	7.2 Creation and Integration of Virtual & Physical Content into the Scene
	7.3 Crowding of Virtual Content
	7.4 Tracking Toys
	7.5 IoT Toolkit

	8 Conclusion
	Acknowledgments
	References

